海尔布隆三角形的预期大小

Tao Jiang, Ming Li, P. Vitányi
{"title":"海尔布隆三角形的预期大小","authors":"Tao Jiang, Ming Li, P. Vitányi","doi":"10.1109/CCC.1999.766269","DOIUrl":null,"url":null,"abstract":"Heilbronn's triangle problem asks for the least /spl Delta/ such that n points lying in the unit disc necessarily contain a triangle of area at most /spl Delta/. Heilbronn initially conjectured /spl Delta/=O(1/n/sup 2/). As a result of concerted mathematical effort it is currently known that there are positive constants c and C such that c log n/n/sup 2//spl les//spl Delta//spl les/C/n/sup 8/7-/spl epsiv// for every constant /spl epsiv/>0. We resolve Heilbronn's problem in the expected case: If we uniformly at random put n points in the unit disc then (i) the area of the smallest triangle has expectation /spl Theta/(1/n/sup 3/); and (ii) the smallest triangle has area /spl Theta/(1/n/sup 3/) with probability almost one. Our proof uses the incompressibility method based on Kolmogorov complexity.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"226 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The expected size of Heilbronn's triangles\",\"authors\":\"Tao Jiang, Ming Li, P. Vitányi\",\"doi\":\"10.1109/CCC.1999.766269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heilbronn's triangle problem asks for the least /spl Delta/ such that n points lying in the unit disc necessarily contain a triangle of area at most /spl Delta/. Heilbronn initially conjectured /spl Delta/=O(1/n/sup 2/). As a result of concerted mathematical effort it is currently known that there are positive constants c and C such that c log n/n/sup 2//spl les//spl Delta//spl les/C/n/sup 8/7-/spl epsiv// for every constant /spl epsiv/>0. We resolve Heilbronn's problem in the expected case: If we uniformly at random put n points in the unit disc then (i) the area of the smallest triangle has expectation /spl Theta/(1/n/sup 3/); and (ii) the smallest triangle has area /spl Theta/(1/n/sup 3/) with probability almost one. Our proof uses the incompressibility method based on Kolmogorov complexity.\",\"PeriodicalId\":432015,\"journal\":{\"name\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"volume\":\"226 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.1999.766269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

海尔布隆三角形问题要求最小/spl Delta/,使得单位圆盘上的n个点必然包含一个面积最大/spl Delta/的三角形。Heilbronn最初推测/spl Delta/= 0 (1/n/sup 2/)。由于协调一致的数学努力,目前已知存在正常数c和c,使得c log n/n/sup 2//spl les//spl Delta//spl les/ c /n/sup 8/7-/spl epsiv//对于每个常数/spl epsiv/>0。我们在期望情况下解决了Heilbronn问题:如果我们均匀随机地在单位圆盘上放置n个点,那么(i)最小三角形的面积为期望/spl Theta/(1/n/sup 3/);(ii)最小的三角形的面积为/spl Theta/(1/n/sup 3/),概率几乎为1。我们的证明使用了基于Kolmogorov复杂度的不可压缩性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The expected size of Heilbronn's triangles
Heilbronn's triangle problem asks for the least /spl Delta/ such that n points lying in the unit disc necessarily contain a triangle of area at most /spl Delta/. Heilbronn initially conjectured /spl Delta/=O(1/n/sup 2/). As a result of concerted mathematical effort it is currently known that there are positive constants c and C such that c log n/n/sup 2//spl les//spl Delta//spl les/C/n/sup 8/7-/spl epsiv// for every constant /spl epsiv/>0. We resolve Heilbronn's problem in the expected case: If we uniformly at random put n points in the unit disc then (i) the area of the smallest triangle has expectation /spl Theta/(1/n/sup 3/); and (ii) the smallest triangle has area /spl Theta/(1/n/sup 3/) with probability almost one. Our proof uses the incompressibility method based on Kolmogorov complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信