使用卡尔曼滤波器的强化学习

Kei Takahata, T. Miura
{"title":"使用卡尔曼滤波器的强化学习","authors":"Kei Takahata, T. Miura","doi":"10.1109/ICCICC46617.2019.9146066","DOIUrl":null,"url":null,"abstract":"In this investigation, we discuss a game of pursuit-evasion, or a hunter-prey problems using Q-learning framework. This has always been a popular research subject in the field of robotics where a hunter moves around in pursuit a prey. We involve Kalman filters to estimate the prey's status (location and velocity) and learn Q-values based on the estimated status. We evaluate our approach by convergence of Q-values and capturing steps.","PeriodicalId":294902,"journal":{"name":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"207 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reinforcement Learning using Kalman Filters\",\"authors\":\"Kei Takahata, T. Miura\",\"doi\":\"10.1109/ICCICC46617.2019.9146066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this investigation, we discuss a game of pursuit-evasion, or a hunter-prey problems using Q-learning framework. This has always been a popular research subject in the field of robotics where a hunter moves around in pursuit a prey. We involve Kalman filters to estimate the prey's status (location and velocity) and learn Q-values based on the estimated status. We evaluate our approach by convergence of Q-values and capturing steps.\",\"PeriodicalId\":294902,\"journal\":{\"name\":\"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"207 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICC46617.2019.9146066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC46617.2019.9146066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,我们使用Q-learning框架讨论了一个追捕-逃避博弈,或一个狩猎-猎物问题。这一直是机器人领域的热门研究课题,即猎人四处移动以追捕猎物。我们使用卡尔曼滤波来估计猎物的状态(位置和速度),并根据估计的状态学习q值。我们通过q值的收敛性和捕获步骤来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning using Kalman Filters
In this investigation, we discuss a game of pursuit-evasion, or a hunter-prey problems using Q-learning framework. This has always been a popular research subject in the field of robotics where a hunter moves around in pursuit a prey. We involve Kalman filters to estimate the prey's status (location and velocity) and learn Q-values based on the estimated status. We evaluate our approach by convergence of Q-values and capturing steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信