{"title":"主束上的曲率","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.23","DOIUrl":null,"url":null,"abstract":"This chapter examines curvature on a principal bundle. The curvature of a connection on a principal G-bundle is a g-valued 2-form that measures, in some sense, the deviation of the connection from the Maurer-Cartan connection on a product bundle. The Maurer-Cartan form Θ on a Lie group G satisfies the Maurer-Cartan equation. Let M be a smooth manifold. The chapter then pulls the Maurer-Cartan equation back and uses Proposition 14.3 to get the Maurer-Cartan connection. It also considers the second structural equation; the first structural equation is discussed in a previous chapter. Finally, the chapter derives some properties of the curvature form.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"148 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature on a Principal Bundle\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter examines curvature on a principal bundle. The curvature of a connection on a principal G-bundle is a g-valued 2-form that measures, in some sense, the deviation of the connection from the Maurer-Cartan connection on a product bundle. The Maurer-Cartan form Θ on a Lie group G satisfies the Maurer-Cartan equation. Let M be a smooth manifold. The chapter then pulls the Maurer-Cartan equation back and uses Proposition 14.3 to get the Maurer-Cartan connection. It also considers the second structural equation; the first structural equation is discussed in a previous chapter. Finally, the chapter derives some properties of the curvature form.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"148 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter examines curvature on a principal bundle. The curvature of a connection on a principal G-bundle is a g-valued 2-form that measures, in some sense, the deviation of the connection from the Maurer-Cartan connection on a product bundle. The Maurer-Cartan form Θ on a Lie group G satisfies the Maurer-Cartan equation. Let M be a smooth manifold. The chapter then pulls the Maurer-Cartan equation back and uses Proposition 14.3 to get the Maurer-Cartan connection. It also considers the second structural equation; the first structural equation is discussed in a previous chapter. Finally, the chapter derives some properties of the curvature form.