利用邻接矩阵乘法的计算友好图压缩方法

Alexandre P. Francisco, T. Gagie, Susana Ladra, G. Navarro
{"title":"利用邻接矩阵乘法的计算友好图压缩方法","authors":"Alexandre P. Francisco, T. Gagie, Susana Ladra, G. Navarro","doi":"10.1109/DCC.2018.00039","DOIUrl":null,"url":null,"abstract":"Computing the product of the (binary) adjacency matrix of a large graph with a real-valued vector is an important operation that lies at the heart of various graph analysis tasks, such as computing PageRank. In this paper we show that some well-known Web and social graph compression formats are computation-friendly, in the sense that they allow boosting the computation. In particular, we show that the format of Boldi and Vigna allows computing the product in time proportional to the compressed graph size. Our experimental results show speedups of at least 2 on graphs that were compressed at least 5 times with respect to the original. We show that other successful graph compression formats enjoy this property as well.","PeriodicalId":137206,"journal":{"name":"2018 Data Compression Conference","volume":"65 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Exploiting Computation-Friendly Graph Compression Methods for Adjacency-Matrix Multiplication\",\"authors\":\"Alexandre P. Francisco, T. Gagie, Susana Ladra, G. Navarro\",\"doi\":\"10.1109/DCC.2018.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing the product of the (binary) adjacency matrix of a large graph with a real-valued vector is an important operation that lies at the heart of various graph analysis tasks, such as computing PageRank. In this paper we show that some well-known Web and social graph compression formats are computation-friendly, in the sense that they allow boosting the computation. In particular, we show that the format of Boldi and Vigna allows computing the product in time proportional to the compressed graph size. Our experimental results show speedups of at least 2 on graphs that were compressed at least 5 times with respect to the original. We show that other successful graph compression formats enjoy this property as well.\",\"PeriodicalId\":137206,\"journal\":{\"name\":\"2018 Data Compression Conference\",\"volume\":\"65 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2018.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

计算大图的(二进制)邻接矩阵与实值向量的乘积是一项重要的操作,它位于各种图分析任务的核心,例如计算PageRank。在本文中,我们展示了一些著名的Web和社交图压缩格式是计算友好的,从某种意义上说,它们允许提高计算。特别是,我们证明了Boldi和Vigna的格式允许计算与压缩图大小成正比的乘积。我们的实验结果表明,相对于原始图形,压缩至少5倍的图形的速度至少提高了2倍。我们展示了其他成功的图形压缩格式也享有这个属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Computation-Friendly Graph Compression Methods for Adjacency-Matrix Multiplication
Computing the product of the (binary) adjacency matrix of a large graph with a real-valued vector is an important operation that lies at the heart of various graph analysis tasks, such as computing PageRank. In this paper we show that some well-known Web and social graph compression formats are computation-friendly, in the sense that they allow boosting the computation. In particular, we show that the format of Boldi and Vigna allows computing the product in time proportional to the compressed graph size. Our experimental results show speedups of at least 2 on graphs that were compressed at least 5 times with respect to the original. We show that other successful graph compression formats enjoy this property as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信