基于置信度的基于视觉的车道定心联邦蒸馏

Yitao Chen, Dawei Chen, Haoxin Wang, Kyungtae Han, Mingbi Zhao
{"title":"基于置信度的基于视觉的车道定心联邦蒸馏","authors":"Yitao Chen, Dawei Chen, Haoxin Wang, Kyungtae Han, Mingbi Zhao","doi":"10.1109/ICASSPW59220.2023.10193741","DOIUrl":null,"url":null,"abstract":"A fundamental challenge of autonomous driving is maintaining the vehicle in the center of the lane by adjusting the steering angle. Recent advances leverage deep neural networks to predict steering decisions directly from images captured by the car cameras. Machine learning-based steering angle prediction needs to consider the vehicle’s limitation in uploading large amounts of potentially private data for model training. Federated learning can address these constraints by enabling multiple vehicles to collaboratively train a global model without sharing their private data, but it is difficult to achieve good accuracy as the data distribution is often non-i.i.d. across the vehicles. This paper presents a new confidence-based federated distillation method to improve the performance of federated learning for steering angle prediction. Specifically, it proposes the novel use of entropy to determine the predictive confidence of each local model, and then selects the most confident local model as the teacher to guide the learning of the global model. A comprehensive evaluation of vision-based lane centering shows that the proposed approach can outperform FedAvg and FedDF by 11.3% and 9%, respectively.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"38 17","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confidence-Based Federated Distillation for Vision-Based Lane-Centering\",\"authors\":\"Yitao Chen, Dawei Chen, Haoxin Wang, Kyungtae Han, Mingbi Zhao\",\"doi\":\"10.1109/ICASSPW59220.2023.10193741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental challenge of autonomous driving is maintaining the vehicle in the center of the lane by adjusting the steering angle. Recent advances leverage deep neural networks to predict steering decisions directly from images captured by the car cameras. Machine learning-based steering angle prediction needs to consider the vehicle’s limitation in uploading large amounts of potentially private data for model training. Federated learning can address these constraints by enabling multiple vehicles to collaboratively train a global model without sharing their private data, but it is difficult to achieve good accuracy as the data distribution is often non-i.i.d. across the vehicles. This paper presents a new confidence-based federated distillation method to improve the performance of federated learning for steering angle prediction. Specifically, it proposes the novel use of entropy to determine the predictive confidence of each local model, and then selects the most confident local model as the teacher to guide the learning of the global model. A comprehensive evaluation of vision-based lane centering shows that the proposed approach can outperform FedAvg and FedDF by 11.3% and 9%, respectively.\",\"PeriodicalId\":158726,\"journal\":{\"name\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"volume\":\"38 17\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSPW59220.2023.10193741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶的一个基本挑战是通过调整转向角度使车辆保持在车道中央。最近的进展是利用深度神经网络直接从汽车摄像头拍摄的图像中预测转向决策。基于机器学习的转向角度预测需要考虑车辆上传大量潜在私有数据用于模型训练的局限性。联邦学习可以通过使多个车辆在不共享其私有数据的情况下协作训练全局模型来解决这些限制,但是由于数据分布通常是非id的,因此很难达到良好的准确性。隔着车辆。本文提出了一种新的基于置信度的联邦蒸馏方法,以提高联邦学习的转向角预测性能。具体来说,它提出了一种新颖的利用熵来确定每个局部模型的预测置信度,然后选择最自信的局部模型作为教师来指导全局模型的学习。对基于视觉的车道定心方法的综合评价表明,该方法比fedag和FedDF分别高出11.3%和9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confidence-Based Federated Distillation for Vision-Based Lane-Centering
A fundamental challenge of autonomous driving is maintaining the vehicle in the center of the lane by adjusting the steering angle. Recent advances leverage deep neural networks to predict steering decisions directly from images captured by the car cameras. Machine learning-based steering angle prediction needs to consider the vehicle’s limitation in uploading large amounts of potentially private data for model training. Federated learning can address these constraints by enabling multiple vehicles to collaboratively train a global model without sharing their private data, but it is difficult to achieve good accuracy as the data distribution is often non-i.i.d. across the vehicles. This paper presents a new confidence-based federated distillation method to improve the performance of federated learning for steering angle prediction. Specifically, it proposes the novel use of entropy to determine the predictive confidence of each local model, and then selects the most confident local model as the teacher to guide the learning of the global model. A comprehensive evaluation of vision-based lane centering shows that the proposed approach can outperform FedAvg and FedDF by 11.3% and 9%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信