改变步长对线性多步码的影响

L. Shampine, P. Bogacki
{"title":"改变步长对线性多步码的影响","authors":"L. Shampine, P. Bogacki","doi":"10.1137/0910060","DOIUrl":null,"url":null,"abstract":"In the usual convergence theory for linear multistep methods, a constant stepsize h is used. For a method of order p, the discretization error is proportional to $h^{p + 1} $. In a variable step code, it is necessary to predict what the discretization error would be if the stepsize were changed to $rh$. It is usual to say that the observed error will be altered by a factor of $r^{p + 1} $. Unfortunately this is not correct for multistep methods. The discrepancy arises in the fact that the usual theory does not model the way variable stepsize codes actually work. In this paper the correct behavior is determined for important classes of formulas and ways of changing stepsize.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"33 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The Effect of Changing the Stepsize in Linear Multistep Codes\",\"authors\":\"L. Shampine, P. Bogacki\",\"doi\":\"10.1137/0910060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the usual convergence theory for linear multistep methods, a constant stepsize h is used. For a method of order p, the discretization error is proportional to $h^{p + 1} $. In a variable step code, it is necessary to predict what the discretization error would be if the stepsize were changed to $rh$. It is usual to say that the observed error will be altered by a factor of $r^{p + 1} $. Unfortunately this is not correct for multistep methods. The discrepancy arises in the fact that the usual theory does not model the way variable stepsize codes actually work. In this paper the correct behavior is determined for important classes of formulas and ways of changing stepsize.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"33 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0910060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在通常的线性多步方法的收敛理论中,使用恒定的步长h。对于p阶的方法,离散误差与$h^{p + 1} $成正比。在可变步长代码中,有必要预测如果步长更改为$rh$,离散化误差将是什么。通常说,观察到的误差将被一个因子r^{p + 1} $改变。不幸的是,这对于多步骤方法是不正确的。这种差异产生于这样一个事实,即通常的理论并没有模拟可变步长代码的实际工作方式。本文确定了重要的一类公式的正确行为和改变步长的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Changing the Stepsize in Linear Multistep Codes
In the usual convergence theory for linear multistep methods, a constant stepsize h is used. For a method of order p, the discretization error is proportional to $h^{p + 1} $. In a variable step code, it is necessary to predict what the discretization error would be if the stepsize were changed to $rh$. It is usual to say that the observed error will be altered by a factor of $r^{p + 1} $. Unfortunately this is not correct for multistep methods. The discrepancy arises in the fact that the usual theory does not model the way variable stepsize codes actually work. In this paper the correct behavior is determined for important classes of formulas and ways of changing stepsize.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信