气动阀自诊断监测系统缺陷诊断新算法

Wooshik Kim, Jangbom Chai
{"title":"气动阀自诊断监测系统缺陷诊断新算法","authors":"Wooshik Kim, Jangbom Chai","doi":"10.1109/ICPHM.2014.7036398","DOIUrl":null,"url":null,"abstract":"We have developed a self-diagnostic monitoring system for an air operated valve system which produces arrow patterns according to the states of the system and makes a diagnosis whenever the system shows the corresponding symptom [1, 2]. In our first model, we have used a neural network and a simple comparison method for decision processor. In this paper, we modify and improve the decision processor module. We developed a logistic regression algorithm for the simple decision algorithm and modified the neural network algorithm. By changing the rule for translating arrow symbols into 2-D tuples, we could make unambiguous and rich training data set. With this, we performed some simulations and present a result.","PeriodicalId":376942,"journal":{"name":"2014 International Conference on Prognostics and Health Management","volume":"220 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New algorithms for diagnosing defects of an air-operated valve for self diagnostic monitoring system\",\"authors\":\"Wooshik Kim, Jangbom Chai\",\"doi\":\"10.1109/ICPHM.2014.7036398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a self-diagnostic monitoring system for an air operated valve system which produces arrow patterns according to the states of the system and makes a diagnosis whenever the system shows the corresponding symptom [1, 2]. In our first model, we have used a neural network and a simple comparison method for decision processor. In this paper, we modify and improve the decision processor module. We developed a logistic regression algorithm for the simple decision algorithm and modified the neural network algorithm. By changing the rule for translating arrow symbols into 2-D tuples, we could make unambiguous and rich training data set. With this, we performed some simulations and present a result.\",\"PeriodicalId\":376942,\"journal\":{\"name\":\"2014 International Conference on Prognostics and Health Management\",\"volume\":\"220 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Prognostics and Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2014.7036398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2014.7036398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们为气动阀门系统开发了一种自诊断监测系统,该系统根据系统的状态产生箭头图案,并在系统出现相应症状时进行诊断[1,2]。在我们的第一个模型中,我们使用了神经网络和简单的比较方法作为决策处理器。本文对决策处理器模块进行了改进。我们为简单决策算法开发了逻辑回归算法,并对神经网络算法进行了改进。通过改变将箭头符号转换为二维元组的规则,我们可以得到明确而丰富的训练数据集。在此基础上,我们进行了一些模拟并给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New algorithms for diagnosing defects of an air-operated valve for self diagnostic monitoring system
We have developed a self-diagnostic monitoring system for an air operated valve system which produces arrow patterns according to the states of the system and makes a diagnosis whenever the system shows the corresponding symptom [1, 2]. In our first model, we have used a neural network and a simple comparison method for decision processor. In this paper, we modify and improve the decision processor module. We developed a logistic regression algorithm for the simple decision algorithm and modified the neural network algorithm. By changing the rule for translating arrow symbols into 2-D tuples, we could make unambiguous and rich training data set. With this, we performed some simulations and present a result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信