基于F-SAE-CNN的PolSAR图像多时相分类

Junjie Luo, Yang Lv, Jiao Guo
{"title":"基于F-SAE-CNN的PolSAR图像多时相分类","authors":"Junjie Luo, Yang Lv, Jiao Guo","doi":"10.1109/CISS57580.2022.9971318","DOIUrl":null,"url":null,"abstract":"Crop classification using polarimetric SAR data is one of the most important applications in Polarimetric Synthetic Aperture Radar (PolSAR) imagery. Obviously, for crop classification, multi-temporal PolSAR data can provide more information than single-temporal PolSAR data, but the processing method of the matching image data is relatively backward. Aiming at the high-dimensional data composed of multi-temporal PolSAR, this paper proposes a method to integrate the stacked auto-encoder network and convolutional neural network, making full use of the dimension reduction advantages of the stacked auto-encoder network and the superior classification performance of the convolutional neural network. By constructing a fusion network, the multi-temporal PolSAR images can be processed once, the classification accuracy can be improved, and the processing steps can be simplified. The experimental results show that, compared with the traditional Stacked Auto-encoder and Convolutional Neural Network (SAE-CNN) classification method, the multitemporal PolSAR image classification method based on Fusion of Stacked Auto-encoder and Convolutional Neural Network (F-SAE-CNN) proposed in this paper has the highest classification accuracy, which effectively combines the advantages of the self-encoding network and the CNN network, and provides a new idea for PolSAR image classification work.","PeriodicalId":331510,"journal":{"name":"2022 3rd China International SAR Symposium (CISS)","volume":"258 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-temporal PolSAR Image Classification Using F-SAE-CNN\",\"authors\":\"Junjie Luo, Yang Lv, Jiao Guo\",\"doi\":\"10.1109/CISS57580.2022.9971318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crop classification using polarimetric SAR data is one of the most important applications in Polarimetric Synthetic Aperture Radar (PolSAR) imagery. Obviously, for crop classification, multi-temporal PolSAR data can provide more information than single-temporal PolSAR data, but the processing method of the matching image data is relatively backward. Aiming at the high-dimensional data composed of multi-temporal PolSAR, this paper proposes a method to integrate the stacked auto-encoder network and convolutional neural network, making full use of the dimension reduction advantages of the stacked auto-encoder network and the superior classification performance of the convolutional neural network. By constructing a fusion network, the multi-temporal PolSAR images can be processed once, the classification accuracy can be improved, and the processing steps can be simplified. The experimental results show that, compared with the traditional Stacked Auto-encoder and Convolutional Neural Network (SAE-CNN) classification method, the multitemporal PolSAR image classification method based on Fusion of Stacked Auto-encoder and Convolutional Neural Network (F-SAE-CNN) proposed in this paper has the highest classification accuracy, which effectively combines the advantages of the self-encoding network and the CNN network, and provides a new idea for PolSAR image classification work.\",\"PeriodicalId\":331510,\"journal\":{\"name\":\"2022 3rd China International SAR Symposium (CISS)\",\"volume\":\"258 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd China International SAR Symposium (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS57580.2022.9971318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd China International SAR Symposium (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS57580.2022.9971318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用偏振SAR数据进行作物分类是偏振合成孔径雷达(PolSAR)成像中最重要的应用之一。显然,对于作物分类,多时相PolSAR数据可以提供比单时相PolSAR数据更多的信息,但匹配图像数据的处理方法相对落后。针对多时相PolSAR构成的高维数据,本文提出了一种将堆叠自编码器网络与卷积神经网络相结合的方法,充分利用堆叠自编码器网络的降维优势和卷积神经网络优越的分类性能。通过构建融合网络,对多时相PolSAR图像进行一次处理,提高了分类精度,简化了处理步骤。实验结果表明,与传统的堆叠自编码器和卷积神经网络(SAE-CNN)分类方法相比,本文提出的基于堆叠自编码器和卷积神经网络融合(F-SAE-CNN)的多时相PolSAR图像分类方法具有最高的分类精度,有效地结合了自编码网络和CNN网络的优点;为PolSAR图像分类工作提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-temporal PolSAR Image Classification Using F-SAE-CNN
Crop classification using polarimetric SAR data is one of the most important applications in Polarimetric Synthetic Aperture Radar (PolSAR) imagery. Obviously, for crop classification, multi-temporal PolSAR data can provide more information than single-temporal PolSAR data, but the processing method of the matching image data is relatively backward. Aiming at the high-dimensional data composed of multi-temporal PolSAR, this paper proposes a method to integrate the stacked auto-encoder network and convolutional neural network, making full use of the dimension reduction advantages of the stacked auto-encoder network and the superior classification performance of the convolutional neural network. By constructing a fusion network, the multi-temporal PolSAR images can be processed once, the classification accuracy can be improved, and the processing steps can be simplified. The experimental results show that, compared with the traditional Stacked Auto-encoder and Convolutional Neural Network (SAE-CNN) classification method, the multitemporal PolSAR image classification method based on Fusion of Stacked Auto-encoder and Convolutional Neural Network (F-SAE-CNN) proposed in this paper has the highest classification accuracy, which effectively combines the advantages of the self-encoding network and the CNN network, and provides a new idea for PolSAR image classification work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信