{"title":"辛层析和光学层析的概率表示和新的熵不确定性关系","authors":"M. Man'ko, V. Man'ko, S. Nicola, R. Fedele","doi":"10.1556/APH.26.2006.1-2.10","DOIUrl":null,"url":null,"abstract":"Entropic uncertainty relations for Shannon entropies associated with tomographic probability distributions of continuous quadratures are reviewed. New entropie uncertainty relations in the form of inequalities for integrals containing the tomograms of quantum states and deformation parameter are obtained.","PeriodicalId":150867,"journal":{"name":"Acta Physica Hungarica B) Quantum Electronics","volume":"116 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Probability representation and new entropic uncertainty relations for symplectic and optical tomograms\",\"authors\":\"M. Man'ko, V. Man'ko, S. Nicola, R. Fedele\",\"doi\":\"10.1556/APH.26.2006.1-2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entropic uncertainty relations for Shannon entropies associated with tomographic probability distributions of continuous quadratures are reviewed. New entropie uncertainty relations in the form of inequalities for integrals containing the tomograms of quantum states and deformation parameter are obtained.\",\"PeriodicalId\":150867,\"journal\":{\"name\":\"Acta Physica Hungarica B) Quantum Electronics\",\"volume\":\"116 14\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Hungarica B) Quantum Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/APH.26.2006.1-2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Hungarica B) Quantum Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/APH.26.2006.1-2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probability representation and new entropic uncertainty relations for symplectic and optical tomograms
Entropic uncertainty relations for Shannon entropies associated with tomographic probability distributions of continuous quadratures are reviewed. New entropie uncertainty relations in the form of inequalities for integrals containing the tomograms of quantum states and deformation parameter are obtained.