热损伤纤维-树脂梁在末端谐波力作用下的动态响应

H. Nayeb-Hashemi, A. Harrison
{"title":"热损伤纤维-树脂梁在末端谐波力作用下的动态响应","authors":"H. Nayeb-Hashemi, A. Harrison","doi":"10.1115/imece2000-1259","DOIUrl":null,"url":null,"abstract":"\n A cantilever beam built of fiber-resin composite material and damaged by heat is evaluated for its dynamic response using numerical methods. The goal of research is to produce a diagnostic process in which dynamic response can be used to estimate the severity of damage to the beam. Research proceeds from formulation of the continuous media equations for vibration in a multiply segmented beam, to the development of finite element models for the beam. It is discovered that the results of these two methods are qualitatively different from the predictions of a lumped system model, in that the lumped system predicts that frictional damping should reduce the dominant frequency of vibration while the more elaborated models indicate that damping may increase the dominant frequency. It is further discovered that the size and location of damage (the geometry) are equally as important as the local stiffness and damping of the damaged region (the material properties). The results indicate that the dominant frequency of dynamic response is not a sufficient symptom for complete diagnosis of damage in the beam.","PeriodicalId":270413,"journal":{"name":"Recent Advances in Solids and Structures","volume":"24 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic Response of a Heat Damaged Fiber-Resin Beam Subjected to Harmonic Forcing at the Tip\",\"authors\":\"H. Nayeb-Hashemi, A. Harrison\",\"doi\":\"10.1115/imece2000-1259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A cantilever beam built of fiber-resin composite material and damaged by heat is evaluated for its dynamic response using numerical methods. The goal of research is to produce a diagnostic process in which dynamic response can be used to estimate the severity of damage to the beam. Research proceeds from formulation of the continuous media equations for vibration in a multiply segmented beam, to the development of finite element models for the beam. It is discovered that the results of these two methods are qualitatively different from the predictions of a lumped system model, in that the lumped system predicts that frictional damping should reduce the dominant frequency of vibration while the more elaborated models indicate that damping may increase the dominant frequency. It is further discovered that the size and location of damage (the geometry) are equally as important as the local stiffness and damping of the damaged region (the material properties). The results indicate that the dominant frequency of dynamic response is not a sufficient symptom for complete diagnosis of damage in the beam.\",\"PeriodicalId\":270413,\"journal\":{\"name\":\"Recent Advances in Solids and Structures\",\"volume\":\"24 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Solids and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Solids and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

采用数值方法对热损伤后的纤维-树脂复合材料悬臂梁的动力响应进行了研究。研究的目的是产生一种诊断过程,其中动态响应可以用来估计梁的损伤程度。研究从多分段梁的连续介质振动方程的公式开始,到梁的有限元模型的发展。发现这两种方法的结果与集总系统模型的预测有质的不同,集总系统预测摩擦阻尼会降低振动的主导频率,而更详细的模型表明阻尼可能会增加主导频率。进一步发现,损伤的大小和位置(几何形状)与损伤区域的局部刚度和阻尼(材料特性)同样重要。结果表明,动力响应的主导频率并不能完全诊断梁的损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Response of a Heat Damaged Fiber-Resin Beam Subjected to Harmonic Forcing at the Tip
A cantilever beam built of fiber-resin composite material and damaged by heat is evaluated for its dynamic response using numerical methods. The goal of research is to produce a diagnostic process in which dynamic response can be used to estimate the severity of damage to the beam. Research proceeds from formulation of the continuous media equations for vibration in a multiply segmented beam, to the development of finite element models for the beam. It is discovered that the results of these two methods are qualitatively different from the predictions of a lumped system model, in that the lumped system predicts that frictional damping should reduce the dominant frequency of vibration while the more elaborated models indicate that damping may increase the dominant frequency. It is further discovered that the size and location of damage (the geometry) are equally as important as the local stiffness and damping of the damaged region (the material properties). The results indicate that the dominant frequency of dynamic response is not a sufficient symptom for complete diagnosis of damage in the beam.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信