{"title":"油勺捕集效率的仿真与分析","authors":"Lyu Yaguo, Jiang Le, Liu Zhenxia, H. Jianping","doi":"10.1115/GT2018-75989","DOIUrl":null,"url":null,"abstract":"Under-race lubrication is the main method for the main shaft bearing of aero-engine which with higher performance. Oil scoop is an important part of the under-race lubrication structure, which plays an important role in capturing oil coming out of a stationary jet nozzle, and the efficiency of oil capture has great influence on the performance of the under-race lubrication. In this paper, a reasonable numerical simulation method is used to calculate a certain radial oil scoop. The velocity distribution of the internal air field in the lubrication structure and the oil distribution of the oil-gas two phase flow field were calculated and the scoop efficiency under different working conditions were calculated. The scoop efficiency under the three oil jet nozzles was verified by the test data. Finally, the influence of the shaft rotation speed, the oil flow rate and the number of the oil nozzles on the scoop efficiency of the radial scoop is analyzed, and the reason of these regularities is analyzed in detail. The result of this study may provide an idea or method for the optimization and improvement of oil scoop with similar structure.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"50 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Simulation and Analysis of Oil Scoop Capture Efficiency\",\"authors\":\"Lyu Yaguo, Jiang Le, Liu Zhenxia, H. Jianping\",\"doi\":\"10.1115/GT2018-75989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under-race lubrication is the main method for the main shaft bearing of aero-engine which with higher performance. Oil scoop is an important part of the under-race lubrication structure, which plays an important role in capturing oil coming out of a stationary jet nozzle, and the efficiency of oil capture has great influence on the performance of the under-race lubrication. In this paper, a reasonable numerical simulation method is used to calculate a certain radial oil scoop. The velocity distribution of the internal air field in the lubrication structure and the oil distribution of the oil-gas two phase flow field were calculated and the scoop efficiency under different working conditions were calculated. The scoop efficiency under the three oil jet nozzles was verified by the test data. Finally, the influence of the shaft rotation speed, the oil flow rate and the number of the oil nozzles on the scoop efficiency of the radial scoop is analyzed, and the reason of these regularities is analyzed in detail. The result of this study may provide an idea or method for the optimization and improvement of oil scoop with similar structure.\",\"PeriodicalId\":114672,\"journal\":{\"name\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine\",\"volume\":\"50 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-75989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-75989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation and Analysis of Oil Scoop Capture Efficiency
Under-race lubrication is the main method for the main shaft bearing of aero-engine which with higher performance. Oil scoop is an important part of the under-race lubrication structure, which plays an important role in capturing oil coming out of a stationary jet nozzle, and the efficiency of oil capture has great influence on the performance of the under-race lubrication. In this paper, a reasonable numerical simulation method is used to calculate a certain radial oil scoop. The velocity distribution of the internal air field in the lubrication structure and the oil distribution of the oil-gas two phase flow field were calculated and the scoop efficiency under different working conditions were calculated. The scoop efficiency under the three oil jet nozzles was verified by the test data. Finally, the influence of the shaft rotation speed, the oil flow rate and the number of the oil nozzles on the scoop efficiency of the radial scoop is analyzed, and the reason of these regularities is analyzed in detail. The result of this study may provide an idea or method for the optimization and improvement of oil scoop with similar structure.