A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, M. Simonovits
{"title":"直径的近似:随机化没有帮助","authors":"A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, M. Simonovits","doi":"10.1109/SFCS.1998.743451","DOIUrl":null,"url":null,"abstract":"We describe a deterministic polynomial-time algorithm which, for a convex body K in Euclidean n-space, finds upper and lower bounds on K's diameter which differ by a factor of O(/spl radic/n/logn). We show that this is, within a constant factor, the best approximation to the diameter that a polynomial-time algorithm can produce even if randomization is allowed. We also show that the above results hold for other quantities similar to the diameter-namely; inradius, circumradius, width, and maximization of the norm over K. In addition to these results for Euclidean spaces, we give tight results for the error of deterministic polynomial-time approximations of radii and norm-maxima for convex bodies in finite-dimensional l/sub p/ spaces.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"48 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Approximation of diameters: randomization doesn't help\",\"authors\":\"A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, M. Simonovits\",\"doi\":\"10.1109/SFCS.1998.743451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a deterministic polynomial-time algorithm which, for a convex body K in Euclidean n-space, finds upper and lower bounds on K's diameter which differ by a factor of O(/spl radic/n/logn). We show that this is, within a constant factor, the best approximation to the diameter that a polynomial-time algorithm can produce even if randomization is allowed. We also show that the above results hold for other quantities similar to the diameter-namely; inradius, circumradius, width, and maximization of the norm over K. In addition to these results for Euclidean spaces, we give tight results for the error of deterministic polynomial-time approximations of radii and norm-maxima for convex bodies in finite-dimensional l/sub p/ spaces.\",\"PeriodicalId\":228145,\"journal\":{\"name\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"volume\":\"48 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1998.743451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximation of diameters: randomization doesn't help
We describe a deterministic polynomial-time algorithm which, for a convex body K in Euclidean n-space, finds upper and lower bounds on K's diameter which differ by a factor of O(/spl radic/n/logn). We show that this is, within a constant factor, the best approximation to the diameter that a polynomial-time algorithm can produce even if randomization is allowed. We also show that the above results hold for other quantities similar to the diameter-namely; inradius, circumradius, width, and maximization of the norm over K. In addition to these results for Euclidean spaces, we give tight results for the error of deterministic polynomial-time approximations of radii and norm-maxima for convex bodies in finite-dimensional l/sub p/ spaces.