声学模型再训练的半监督学习:带噪声文本的语音数据处理

Abhijith Madan, Ayush Khopkar, Shreekantha Nadig, M. SrinivasaRaghavanK., Dhanya Eledath, V. Ramasubramanian
{"title":"声学模型再训练的半监督学习:带噪声文本的语音数据处理","authors":"Abhijith Madan, Ayush Khopkar, Shreekantha Nadig, M. SrinivasaRaghavanK., Dhanya Eledath, V. Ramasubramanian","doi":"10.1109/SPCOM50965.2020.9179517","DOIUrl":null,"url":null,"abstract":"We address the problem of retraining a seed acoustic model from a large corpus which is associated with noisy labeling. We propose a forced-alignment likelihood and fuzzy string matching score based iterative selection of the corpus data to retrain the acoustic model in an order of increasing degree of noise in the transcript, yielding a succession of enhanced acoustic models, offering progressively lower error rates on an held-out test data. We show results in terms of PER (phoneme-error-rate) on a large broadcast news data from a national broadcast network containing multiple languages of transcribed-speech, demonstrating the strong utility of such an approach for training of acoustic models from noisy-transcript.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"7 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semi-supervised learning for acoustic model retraining: Handling speech data with noisy transcript\",\"authors\":\"Abhijith Madan, Ayush Khopkar, Shreekantha Nadig, M. SrinivasaRaghavanK., Dhanya Eledath, V. Ramasubramanian\",\"doi\":\"10.1109/SPCOM50965.2020.9179517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of retraining a seed acoustic model from a large corpus which is associated with noisy labeling. We propose a forced-alignment likelihood and fuzzy string matching score based iterative selection of the corpus data to retrain the acoustic model in an order of increasing degree of noise in the transcript, yielding a succession of enhanced acoustic models, offering progressively lower error rates on an held-out test data. We show results in terms of PER (phoneme-error-rate) on a large broadcast news data from a national broadcast network containing multiple languages of transcribed-speech, demonstrating the strong utility of such an approach for training of acoustic models from noisy-transcript.\",\"PeriodicalId\":208527,\"journal\":{\"name\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"7 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM50965.2020.9179517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们解决了从与噪声标记相关的大型语料库中重新训练种子声学模型的问题。我们提出了一种基于强制对齐似然和模糊字符串匹配分数的语料库数据迭代选择,以按文本中噪声程度增加的顺序重新训练声学模型,从而产生一系列增强的声学模型,在持续测试数据上提供逐渐降低的错误率。我们展示了来自包含多种语言转录语音的国家广播网络的大型广播新闻数据的PER(音位错误率)结果,证明了这种方法在训练来自噪声转录的声学模型方面的强大实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-supervised learning for acoustic model retraining: Handling speech data with noisy transcript
We address the problem of retraining a seed acoustic model from a large corpus which is associated with noisy labeling. We propose a forced-alignment likelihood and fuzzy string matching score based iterative selection of the corpus data to retrain the acoustic model in an order of increasing degree of noise in the transcript, yielding a succession of enhanced acoustic models, offering progressively lower error rates on an held-out test data. We show results in terms of PER (phoneme-error-rate) on a large broadcast news data from a national broadcast network containing multiple languages of transcribed-speech, demonstrating the strong utility of such an approach for training of acoustic models from noisy-transcript.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信