用Beta回归建模协变量校正ROC

Sarah A. Stanley, J. Tubbs
{"title":"用Beta回归建模协变量校正ROC","authors":"Sarah A. Stanley, J. Tubbs","doi":"10.11648/J.SJAMS.20180604.11","DOIUrl":null,"url":null,"abstract":"Background : Several regression methodologies have been developed to model the ROC as a function of covariate effects within the generalized linear model (GLM) framework. In this article, we present an alternative to two existing parametric and semi-parametric methods for estimating a covariate adjusted ROC. The existing methods utilize GLMs for binary data when the expected value equals the probability that the test result for a diseased subject exceeds that of a non-diseased subject with the same covariate values. This probability is referred to as the placement value. Objective : The new method directly models the placement values through beta regression. Methods : We compare the proposed method to the existing models with simulation and a clinical study. Conclusion : The proposed method performs favorably with the commonly used parametric method and has better performance than the semi-parametric method when modeling the covariate adjusted ROC regression.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"1980 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Beta Regression for Modeling a Covariate Adjusted ROC\",\"authors\":\"Sarah A. Stanley, J. Tubbs\",\"doi\":\"10.11648/J.SJAMS.20180604.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background : Several regression methodologies have been developed to model the ROC as a function of covariate effects within the generalized linear model (GLM) framework. In this article, we present an alternative to two existing parametric and semi-parametric methods for estimating a covariate adjusted ROC. The existing methods utilize GLMs for binary data when the expected value equals the probability that the test result for a diseased subject exceeds that of a non-diseased subject with the same covariate values. This probability is referred to as the placement value. Objective : The new method directly models the placement values through beta regression. Methods : We compare the proposed method to the existing models with simulation and a clinical study. Conclusion : The proposed method performs favorably with the commonly used parametric method and has better performance than the semi-parametric method when modeling the covariate adjusted ROC regression.\",\"PeriodicalId\":422938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"1980 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJAMS.20180604.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20180604.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

背景:在广义线性模型(GLM)框架内,已经开发了几种回归方法来将ROC建模为协变量效应的函数。在本文中,我们提出了一种替代现有的两种参数和半参数方法来估计协变量调整的ROC。当期望值等于具有相同协变量值的患病受试者的测试结果超过非患病受试者的测试结果的概率时,现有方法对二元数据使用glm。这个概率被称为放置值。目的:利用β回归直接建立放置值模型。方法:将该方法与现有模型进行仿真和临床研究比较。结论:在协变量调整后的ROC回归建模中,该方法优于常用的参数方法,且优于半参数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beta Regression for Modeling a Covariate Adjusted ROC
Background : Several regression methodologies have been developed to model the ROC as a function of covariate effects within the generalized linear model (GLM) framework. In this article, we present an alternative to two existing parametric and semi-parametric methods for estimating a covariate adjusted ROC. The existing methods utilize GLMs for binary data when the expected value equals the probability that the test result for a diseased subject exceeds that of a non-diseased subject with the same covariate values. This probability is referred to as the placement value. Objective : The new method directly models the placement values through beta regression. Methods : We compare the proposed method to the existing models with simulation and a clinical study. Conclusion : The proposed method performs favorably with the commonly used parametric method and has better performance than the semi-parametric method when modeling the covariate adjusted ROC regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信