偶位移和奇位移压缩态的高阶压缩

H. Fan, Zhongxi Zhang
{"title":"偶位移和奇位移压缩态的高阶压缩","authors":"H. Fan, Zhongxi Zhang","doi":"10.1088/0954-8998/6/5/004","DOIUrl":null,"url":null,"abstract":"We study even- and odd-displaced squeezed states, which were proposed by us as 1/Ne(D(z)+D(-z))S(r) mod 0) and 1/N0(D(z)-D(-z))S(r) mod 0). We find: (i) when z is real, the 2Nth moments in both states are larger than in the ordinary squeezed state; (ii) for the same z= mod z mod , the two states can not exhibit stronger squeezing than the squeezed state in the same order; (iii) under the condition mod z mod e-r square root 2>>1, the even (odd)-displaced squeezed state can respectively exhibit stronger (4k-2) (4k)-order (k=1,2,3,...) squeezing than the squeezed state.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Higher-order squeezing for even- and odd-displaced squeezed states\",\"authors\":\"H. Fan, Zhongxi Zhang\",\"doi\":\"10.1088/0954-8998/6/5/004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study even- and odd-displaced squeezed states, which were proposed by us as 1/Ne(D(z)+D(-z))S(r) mod 0) and 1/N0(D(z)-D(-z))S(r) mod 0). We find: (i) when z is real, the 2Nth moments in both states are larger than in the ordinary squeezed state; (ii) for the same z= mod z mod , the two states can not exhibit stronger squeezing than the squeezed state in the same order; (iii) under the condition mod z mod e-r square root 2>>1, the even (odd)-displaced squeezed state can respectively exhibit stronger (4k-2) (4k)-order (k=1,2,3,...) squeezing than the squeezed state.\",\"PeriodicalId\":130003,\"journal\":{\"name\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0954-8998/6/5/004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Optics: Journal of The European Optical Society Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0954-8998/6/5/004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们研究了偶位移压缩态和奇位移压缩态,我们提出了1/Ne(D(z)+D(-z))S(r) mod 0)和1/N0(D(z)-D(-z))S(r) mod 0)。我们发现:(i)当z为实数时,这两种状态的第2n阶矩都比普通压缩态大;(ii)对于相同的z= mod z mod,两种状态在相同的顺序下不会表现出比压缩状态更强的压缩;(iii)在模z模e-r平方根2>>1的条件下,偶(奇)位移压缩态分别比压缩态表现出更强的(4k-2) (4k)阶(k=1,2,3,…)压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-order squeezing for even- and odd-displaced squeezed states
We study even- and odd-displaced squeezed states, which were proposed by us as 1/Ne(D(z)+D(-z))S(r) mod 0) and 1/N0(D(z)-D(-z))S(r) mod 0). We find: (i) when z is real, the 2Nth moments in both states are larger than in the ordinary squeezed state; (ii) for the same z= mod z mod , the two states can not exhibit stronger squeezing than the squeezed state in the same order; (iii) under the condition mod z mod e-r square root 2>>1, the even (odd)-displaced squeezed state can respectively exhibit stronger (4k-2) (4k)-order (k=1,2,3,...) squeezing than the squeezed state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信