通过无限教与学数学哲学

Lam Kai Shun
{"title":"通过无限教与学数学哲学","authors":"Lam Kai Shun","doi":"10.32861/AJAMS.72.94.105","DOIUrl":null,"url":null,"abstract":"Lam [1], explained how mathematics is not only a technical subject but also a cultural one. As such, mathematical proofs and definitions, instead of simply numerical calculations, are essential for students when learning the subject. Hence, there must be a change in Hong Kong’s local teachers’ pedagogies. This author suggests three alternative way to teach mathematical philosophy through infinity. These alternatives are as follows: 1. Teach the concept of a limit in formalism through story telling, 2. Use geometry to intuitively learn infinity through constructivism, and 3. Implement schematic stages for proof by contradiction. Simultaneously, teachers should also be aware of the difficulties among students in understanding different abstract concepts. These challenges include the following: 1. Struggles with the concept of a limit, 2.Mistakes in intuitively computing infinity, and 3. Challenges in handling the method of proof by contradiction. Adopting these alternative approaches, can provide the necessary support to pupils trying to comprehend the above mentioned difficult mathematical ideas and ultimately transform students’ beliefs [2]. One can analyze these changed beliefs against the background of con-ceptual change. According to Davis [3], “this change implies conceiving of teaching as facili-tating, rather than managing learning and changing roles from the sage on the stage to a guide on the side”. As a result, Hong Kong’s academic results in mathematics should hopefully improve.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"39 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teaching and Learning Mathematical Philosophy Through Infinity\",\"authors\":\"Lam Kai Shun\",\"doi\":\"10.32861/AJAMS.72.94.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lam [1], explained how mathematics is not only a technical subject but also a cultural one. As such, mathematical proofs and definitions, instead of simply numerical calculations, are essential for students when learning the subject. Hence, there must be a change in Hong Kong’s local teachers’ pedagogies. This author suggests three alternative way to teach mathematical philosophy through infinity. These alternatives are as follows: 1. Teach the concept of a limit in formalism through story telling, 2. Use geometry to intuitively learn infinity through constructivism, and 3. Implement schematic stages for proof by contradiction. Simultaneously, teachers should also be aware of the difficulties among students in understanding different abstract concepts. These challenges include the following: 1. Struggles with the concept of a limit, 2.Mistakes in intuitively computing infinity, and 3. Challenges in handling the method of proof by contradiction. Adopting these alternative approaches, can provide the necessary support to pupils trying to comprehend the above mentioned difficult mathematical ideas and ultimately transform students’ beliefs [2]. One can analyze these changed beliefs against the background of con-ceptual change. According to Davis [3], “this change implies conceiving of teaching as facili-tating, rather than managing learning and changing roles from the sage on the stage to a guide on the side”. As a result, Hong Kong’s academic results in mathematics should hopefully improve.\",\"PeriodicalId\":375032,\"journal\":{\"name\":\"Academic Journal of Applied Mathematical Sciences\",\"volume\":\"39 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Applied Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32861/AJAMS.72.94.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32861/AJAMS.72.94.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Lam[1]解释了数学不仅是一门技术学科,也是一门文化学科。因此,数学证明和定义,而不是简单的数值计算,对学生学习这门学科至关重要。因此,香港本地教师的教学方法必须有所改变。作者提出了三种通过无限来教授数学哲学的方法。这些备选方案如下:通过讲故事来教授形式主义的极限概念;2 .利用几何直观地通过建构主义学习无穷;实施反证法的图解阶段。同时,教师也应该意识到学生在理解不同抽象概念时的困难。这些挑战包括:1。挣扎于极限的概念,2。直觉计算无穷和3时的错误。处理反证法的挑战。采用这些替代方法,可以为试图理解上述困难的数学概念的学生提供必要的支持,并最终改变学生的信念[2]。人们可以在观念变化的背景下分析这些观念的变化。根据Davis[3]的说法,“这种变化意味着将教学设想为促进,而不是管理学习,并将角色从舞台上的圣人转变为旁边的向导”。因此,香港的数学成绩有望有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Teaching and Learning Mathematical Philosophy Through Infinity
Lam [1], explained how mathematics is not only a technical subject but also a cultural one. As such, mathematical proofs and definitions, instead of simply numerical calculations, are essential for students when learning the subject. Hence, there must be a change in Hong Kong’s local teachers’ pedagogies. This author suggests three alternative way to teach mathematical philosophy through infinity. These alternatives are as follows: 1. Teach the concept of a limit in formalism through story telling, 2. Use geometry to intuitively learn infinity through constructivism, and 3. Implement schematic stages for proof by contradiction. Simultaneously, teachers should also be aware of the difficulties among students in understanding different abstract concepts. These challenges include the following: 1. Struggles with the concept of a limit, 2.Mistakes in intuitively computing infinity, and 3. Challenges in handling the method of proof by contradiction. Adopting these alternative approaches, can provide the necessary support to pupils trying to comprehend the above mentioned difficult mathematical ideas and ultimately transform students’ beliefs [2]. One can analyze these changed beliefs against the background of con-ceptual change. According to Davis [3], “this change implies conceiving of teaching as facili-tating, rather than managing learning and changing roles from the sage on the stage to a guide on the side”. As a result, Hong Kong’s academic results in mathematics should hopefully improve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信