{"title":"射频图像形成中波束形成的一种速率失真方法","authors":"R. Bonneau","doi":"10.1109/AIPR.2006.7","DOIUrl":null,"url":null,"abstract":"Conventional RF image formation relies on a fixed waveform set that is based largely on obtaining maximum resolution for a given amount of bandwidth present in a waveform. However, the correlation process for a given waveform set varies widely depending on the cross correlation properties of the waveform and the geometry of the aperture interrogating the object to be imaged. We propose a method that maximizes quality of the imagery being reconstructed based by first using an orthogonal basis to minimize the unwanted correlation response for the waveform. We then shape the frequency and temporal correlation response of the waveform for a given target using a rate distortion criteria and demonstrate the performance of the method.","PeriodicalId":375571,"journal":{"name":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","volume":"1 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Rate Distortion Method for Beamforming in RF Image Formation\",\"authors\":\"R. Bonneau\",\"doi\":\"10.1109/AIPR.2006.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional RF image formation relies on a fixed waveform set that is based largely on obtaining maximum resolution for a given amount of bandwidth present in a waveform. However, the correlation process for a given waveform set varies widely depending on the cross correlation properties of the waveform and the geometry of the aperture interrogating the object to be imaged. We propose a method that maximizes quality of the imagery being reconstructed based by first using an orthogonal basis to minimize the unwanted correlation response for the waveform. We then shape the frequency and temporal correlation response of the waveform for a given target using a rate distortion criteria and demonstrate the performance of the method.\",\"PeriodicalId\":375571,\"journal\":{\"name\":\"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)\",\"volume\":\"1 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2006.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2006.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Rate Distortion Method for Beamforming in RF Image Formation
Conventional RF image formation relies on a fixed waveform set that is based largely on obtaining maximum resolution for a given amount of bandwidth present in a waveform. However, the correlation process for a given waveform set varies widely depending on the cross correlation properties of the waveform and the geometry of the aperture interrogating the object to be imaged. We propose a method that maximizes quality of the imagery being reconstructed based by first using an orthogonal basis to minimize the unwanted correlation response for the waveform. We then shape the frequency and temporal correlation response of the waveform for a given target using a rate distortion criteria and demonstrate the performance of the method.