非侵入式负荷监测的无监督分解

S. Pattem
{"title":"非侵入式负荷监测的无监督分解","authors":"S. Pattem","doi":"10.1109/ICMLA.2012.249","DOIUrl":null,"url":null,"abstract":"A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates to abrupt transitions or magnitude changes in the power waveform. The method consists of a sequence of procedures for appliance signature identification, and disaggregation using hidden Markov modeling (HMM), and residual analysis. The key contributions are (a) a novel 'segmented' application of the Viterbi algorithm for sequence decoding with the HMM, (b) details of establishing observation and state transition probabilities for the HMM, and (c) procedures for careful handling of low power signatures. Results show that the method is effective for magnitude-based disaggregation, and provide insights for a more complete solution.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"68 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Unsupervised Disaggregation for Non-intrusive Load Monitoring\",\"authors\":\"S. Pattem\",\"doi\":\"10.1109/ICMLA.2012.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates to abrupt transitions or magnitude changes in the power waveform. The method consists of a sequence of procedures for appliance signature identification, and disaggregation using hidden Markov modeling (HMM), and residual analysis. The key contributions are (a) a novel 'segmented' application of the Viterbi algorithm for sequence decoding with the HMM, (b) details of establishing observation and state transition probabilities for the HMM, and (c) procedures for careful handling of low power signatures. Results show that the method is effective for magnitude-based disaggregation, and provide insights for a more complete solution.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"68 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

提出了一种从智能电表数据中提取设备签名的无监督分解方法。用于无监督学习的主要特征与功率波形的突变或幅度变化有关。该方法包括一系列电器签名识别、隐马尔可夫模型分解和残差分析。主要贡献有:(a)将Viterbi算法用于HMM序列解码的新型“分段”应用,(b)建立HMM的观察和状态转移概率的细节,以及(c)仔细处理低功耗签名的程序。结果表明,该方法对基于震级的分解是有效的,并为更完整的解提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Disaggregation for Non-intrusive Load Monitoring
A method for unsupervised disaggregation of appliance signatures from smart meter data is presented. The primary feature used for unsupervised learning relates to abrupt transitions or magnitude changes in the power waveform. The method consists of a sequence of procedures for appliance signature identification, and disaggregation using hidden Markov modeling (HMM), and residual analysis. The key contributions are (a) a novel 'segmented' application of the Viterbi algorithm for sequence decoding with the HMM, (b) details of establishing observation and state transition probabilities for the HMM, and (c) procedures for careful handling of low power signatures. Results show that the method is effective for magnitude-based disaggregation, and provide insights for a more complete solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信