基于局部势函数的移动agent编队稳定与跟踪控制

K. D. Do
{"title":"基于局部势函数的移动agent编队稳定与跟踪控制","authors":"K. D. Do","doi":"10.1109/ACC.2006.1656536","DOIUrl":null,"url":null,"abstract":"We present a constructive method to design cooperative controllers that force a group of N mobile agents to stabilize at a fixed desired location in terms of both shape and orientation while guaranteeing no collisions between the agents can occur. The proposed formation stabilization solution is extended to formation tracking in 2-dimensional (2D) space. The control development is based on new local potential functions, which attain the minimum value when the desired formation is achieved, and are equal to infinity when a collision occurs","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"179 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Formation stabilization and tracking control of mobile agents using local potential functions\",\"authors\":\"K. D. Do\",\"doi\":\"10.1109/ACC.2006.1656536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a constructive method to design cooperative controllers that force a group of N mobile agents to stabilize at a fixed desired location in terms of both shape and orientation while guaranteeing no collisions between the agents can occur. The proposed formation stabilization solution is extended to formation tracking in 2-dimensional (2D) space. The control development is based on new local potential functions, which attain the minimum value when the desired formation is achieved, and are equal to infinity when a collision occurs\",\"PeriodicalId\":265903,\"journal\":{\"name\":\"2006 American Control Conference\",\"volume\":\"179 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2006.1656536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1656536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种建设性的方法来设计合作控制器,迫使一组N个移动智能体在形状和方向上稳定在一个固定的期望位置,同时保证智能体之间不会发生碰撞。将所提出的地层稳定解决方案扩展到二维空间的地层跟踪。控制发展基于新的局部势函数,当达到期望的形状时达到最小值,当发生碰撞时等于无穷大
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation stabilization and tracking control of mobile agents using local potential functions
We present a constructive method to design cooperative controllers that force a group of N mobile agents to stabilize at a fixed desired location in terms of both shape and orientation while guaranteeing no collisions between the agents can occur. The proposed formation stabilization solution is extended to formation tracking in 2-dimensional (2D) space. The control development is based on new local potential functions, which attain the minimum value when the desired formation is achieved, and are equal to infinity when a collision occurs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信