东日本大地震后灾民需求变化的时间意识

T. Hashimoto, T. Kuboyama, B. Chakraborty
{"title":"东日本大地震后灾民需求变化的时间意识","authors":"T. Hashimoto, T. Kuboyama, B. Chakraborty","doi":"10.1109/TENCON.2013.6719012","DOIUrl":null,"url":null,"abstract":"This paper proposes a time series topic detection method to investigate changes in afflicted people's needs after the East Japan Great Earthquake using latent semantic analysis and singular vectors' pattern similarities. Our target data is a blog about afflicted people's needs provided by a non-profit organization in Tohoku, Japan. The method crawls blog messages, extracts terms, and forms document-term matrix over time. Then, it adopts the latent semantic analysis to extract people's needs as hidden topics from each snapshot matrix. We form time series hidden topic-term matrix as 3rd order tensor, so that changes in topics (people's needs) are detected by investigating time-series similarities between hidden topics. In this paper, to show the effectiveness of our proposed method, we also provide the experimental results.","PeriodicalId":425023,"journal":{"name":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","volume":"75 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Temporal awareness of changes in afflicted people's needs after East Japan Great Earthquake\",\"authors\":\"T. Hashimoto, T. Kuboyama, B. Chakraborty\",\"doi\":\"10.1109/TENCON.2013.6719012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a time series topic detection method to investigate changes in afflicted people's needs after the East Japan Great Earthquake using latent semantic analysis and singular vectors' pattern similarities. Our target data is a blog about afflicted people's needs provided by a non-profit organization in Tohoku, Japan. The method crawls blog messages, extracts terms, and forms document-term matrix over time. Then, it adopts the latent semantic analysis to extract people's needs as hidden topics from each snapshot matrix. We form time series hidden topic-term matrix as 3rd order tensor, so that changes in topics (people's needs) are detected by investigating time-series similarities between hidden topics. In this paper, to show the effectiveness of our proposed method, we also provide the experimental results.\",\"PeriodicalId\":425023,\"journal\":{\"name\":\"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)\",\"volume\":\"75 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2013.6719012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2013.6719012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种利用潜在语义分析和奇异向量模式相似度的时间序列主题检测方法来研究东日本大地震后受灾人群需求的变化。我们的目标数据是一个由日本东北的一个非营利组织提供的关于受灾人民需求的博客。该方法会随着时间的推移抓取博客消息、提取术语并形成文档术语矩阵。然后,采用潜在语义分析从每个快照矩阵中提取人们的需求作为隐藏主题。我们将时间序列隐藏主题项矩阵形成三阶张量,通过研究隐藏主题之间的时间序列相似性来检测主题(人们的需求)的变化。为了证明该方法的有效性,文中还给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal awareness of changes in afflicted people's needs after East Japan Great Earthquake
This paper proposes a time series topic detection method to investigate changes in afflicted people's needs after the East Japan Great Earthquake using latent semantic analysis and singular vectors' pattern similarities. Our target data is a blog about afflicted people's needs provided by a non-profit organization in Tohoku, Japan. The method crawls blog messages, extracts terms, and forms document-term matrix over time. Then, it adopts the latent semantic analysis to extract people's needs as hidden topics from each snapshot matrix. We form time series hidden topic-term matrix as 3rd order tensor, so that changes in topics (people's needs) are detected by investigating time-series similarities between hidden topics. In this paper, to show the effectiveness of our proposed method, we also provide the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信