{"title":"基于渐进式领域自适应的弱监督目标检测的学习对象建议","authors":"Yuting Wang, Ricardo Guerrero, V. Pavlovic","doi":"10.1109/WACV56688.2023.00011","DOIUrl":null,"url":null,"abstract":"Weakly-supervised object detection (WSOD) models attempt to leverage image-level annotations in lieu of accurate but costly-to-obtain object localization labels. This oftentimes leads to substandard object detection and lo-calization at inference time. To tackle this issue, we propose D2F2WOD, a Dual-Domain Fully-to-Weakly Supervised Object Detection framework that leverages synthetic data, annotated with precise object localization, to supplement a natural image target domain, where only image-level labels are available. In its warm-up domain adaptation stage, the model learns a fully-supervised object detector (FSOD) to improve the precision of the object proposals in the target domain, and at the same time learns target-domain-specific and detection-aware proposal features. In its main WSOD stage, a WSOD model is specifically tuned to the target domain. The feature extractor and the object proposal generator of the WSOD model are built upon the fine-tuned FSOD model. We test D2F2WOD on five dual-domain image benchmarks. The results show that our method results in consistently improved object detection and localization compared with state-of-the-art methods.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"56 42","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"D2F2WOD: Learning Object Proposals for Weakly-Supervised Object Detection via Progressive Domain Adaptation\",\"authors\":\"Yuting Wang, Ricardo Guerrero, V. Pavlovic\",\"doi\":\"10.1109/WACV56688.2023.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weakly-supervised object detection (WSOD) models attempt to leverage image-level annotations in lieu of accurate but costly-to-obtain object localization labels. This oftentimes leads to substandard object detection and lo-calization at inference time. To tackle this issue, we propose D2F2WOD, a Dual-Domain Fully-to-Weakly Supervised Object Detection framework that leverages synthetic data, annotated with precise object localization, to supplement a natural image target domain, where only image-level labels are available. In its warm-up domain adaptation stage, the model learns a fully-supervised object detector (FSOD) to improve the precision of the object proposals in the target domain, and at the same time learns target-domain-specific and detection-aware proposal features. In its main WSOD stage, a WSOD model is specifically tuned to the target domain. The feature extractor and the object proposal generator of the WSOD model are built upon the fine-tuned FSOD model. We test D2F2WOD on five dual-domain image benchmarks. The results show that our method results in consistently improved object detection and localization compared with state-of-the-art methods.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"56 42\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
D2F2WOD: Learning Object Proposals for Weakly-Supervised Object Detection via Progressive Domain Adaptation
Weakly-supervised object detection (WSOD) models attempt to leverage image-level annotations in lieu of accurate but costly-to-obtain object localization labels. This oftentimes leads to substandard object detection and lo-calization at inference time. To tackle this issue, we propose D2F2WOD, a Dual-Domain Fully-to-Weakly Supervised Object Detection framework that leverages synthetic data, annotated with precise object localization, to supplement a natural image target domain, where only image-level labels are available. In its warm-up domain adaptation stage, the model learns a fully-supervised object detector (FSOD) to improve the precision of the object proposals in the target domain, and at the same time learns target-domain-specific and detection-aware proposal features. In its main WSOD stage, a WSOD model is specifically tuned to the target domain. The feature extractor and the object proposal generator of the WSOD model are built upon the fine-tuned FSOD model. We test D2F2WOD on five dual-domain image benchmarks. The results show that our method results in consistently improved object detection and localization compared with state-of-the-art methods.