GraphConfRec:基于图神经网络的会议推荐系统

Andreea Iana, Heiko Paulheim
{"title":"GraphConfRec:基于图神经网络的会议推荐系统","authors":"Andreea Iana, Heiko Paulheim","doi":"10.1109/JCDL52503.2021.00021","DOIUrl":null,"url":null,"abstract":"In today's academic publishing model, especially in Computer Science, conferences commonly constitute the main platforms for releasing the latest peer-reviewed advancements in their respective fields. However, choosing a suitable academic venue for publishing one's research can represent a challenging task considering the plethora of available conferences, particularly for those at the start of their academic careers, or for those seeking to publish outside of their usual domain. In this paper, we propose GraphConfRec, a conference recommender system which combines SciGraph and graph neural networks, to infer suggestions based not only on title and abstract, but also on coauthorship and citation relationships. GraphConfRec achieves a recall@10 of up to 0.580 and a MAP of up to 0.336 with a graph attention network-based recommendation model. A user study with 25 subjects supports the positive results.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"308 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"GraphConfRec: A Graph Neural Network-Based Conference Recommender System\",\"authors\":\"Andreea Iana, Heiko Paulheim\",\"doi\":\"10.1109/JCDL52503.2021.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's academic publishing model, especially in Computer Science, conferences commonly constitute the main platforms for releasing the latest peer-reviewed advancements in their respective fields. However, choosing a suitable academic venue for publishing one's research can represent a challenging task considering the plethora of available conferences, particularly for those at the start of their academic careers, or for those seeking to publish outside of their usual domain. In this paper, we propose GraphConfRec, a conference recommender system which combines SciGraph and graph neural networks, to infer suggestions based not only on title and abstract, but also on coauthorship and citation relationships. GraphConfRec achieves a recall@10 of up to 0.580 and a MAP of up to 0.336 with a graph attention network-based recommendation model. A user study with 25 subjects supports the positive results.\",\"PeriodicalId\":112400,\"journal\":{\"name\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"308 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCDL52503.2021.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在当今的学术出版模式中,特别是在计算机科学领域,会议通常构成了发布各自领域最新同行评审进展的主要平台。然而,考虑到可用的会议太多,选择一个合适的学术场所发表自己的研究可能是一项具有挑战性的任务,特别是对于那些刚刚开始学术生涯的人,或者那些寻求在他们通常的领域之外发表论文的人。在本文中,我们提出了GraphConfRec,这是一个结合了SciGraph和图神经网络的会议推荐系统,它不仅可以根据标题和摘要,还可以根据合著者和引文关系来推断建议。GraphConfRec使用基于图注意力网络的推荐模型实现了recall@10最高0.580和MAP最高0.336。一项有25名受试者的用户研究支持了这一积极结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GraphConfRec: A Graph Neural Network-Based Conference Recommender System
In today's academic publishing model, especially in Computer Science, conferences commonly constitute the main platforms for releasing the latest peer-reviewed advancements in their respective fields. However, choosing a suitable academic venue for publishing one's research can represent a challenging task considering the plethora of available conferences, particularly for those at the start of their academic careers, or for those seeking to publish outside of their usual domain. In this paper, we propose GraphConfRec, a conference recommender system which combines SciGraph and graph neural networks, to infer suggestions based not only on title and abstract, but also on coauthorship and citation relationships. GraphConfRec achieves a recall@10 of up to 0.580 and a MAP of up to 0.336 with a graph attention network-based recommendation model. A user study with 25 subjects supports the positive results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信