USTEP:通过可扩展的搜索树构建流日志

Arthur Vervaet, Raja Chiky, Mar Callau-Zori
{"title":"USTEP:通过可扩展的搜索树构建流日志","authors":"Arthur Vervaet, Raja Chiky, Mar Callau-Zori","doi":"10.48550/arXiv.2304.12331","DOIUrl":null,"url":null,"abstract":"Logs record valuable system information at runtime. They are widely used by data-driven approaches for development and monitoring purposes. Parsing log messages to structure their format is a classic preliminary step for log-mining tasks. As they appear upstream, parsing operations can become a processing time bottleneck for downstream applications. The quality of parsing also has a direct influence on their efficiency. Here, we propose USTEP, an online log parsing method based on an evolving tree structure. Evaluation results on a wide panel of datasets coming from different real-world systems demonstrate USTEP superiority in terms of both effectiveness and robustness when compared to other online methods.","PeriodicalId":240257,"journal":{"name":"European Grid Conference","volume":"7 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"USTEP: Structuration des logs en flux grâce à un arbre de recherche évolutif\",\"authors\":\"Arthur Vervaet, Raja Chiky, Mar Callau-Zori\",\"doi\":\"10.48550/arXiv.2304.12331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logs record valuable system information at runtime. They are widely used by data-driven approaches for development and monitoring purposes. Parsing log messages to structure their format is a classic preliminary step for log-mining tasks. As they appear upstream, parsing operations can become a processing time bottleneck for downstream applications. The quality of parsing also has a direct influence on their efficiency. Here, we propose USTEP, an online log parsing method based on an evolving tree structure. Evaluation results on a wide panel of datasets coming from different real-world systems demonstrate USTEP superiority in terms of both effectiveness and robustness when compared to other online methods.\",\"PeriodicalId\":240257,\"journal\":{\"name\":\"European Grid Conference\",\"volume\":\"7 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Grid Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.12331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Grid Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.12331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

日志记录了运行时有价值的系统信息。它们被数据驱动的方法广泛用于开发和监测目的。解析日志消息以构建其格式是日志挖掘任务的典型初步步骤。当解析操作出现在上游时,它们可能成为下游应用程序的处理时间瓶颈。解析的质量也直接影响它们的效率。本文提出了一种基于演化树结构的在线日志解析方法USTEP。对来自不同现实世界系统的广泛数据集的评估结果表明,与其他在线方法相比,USTEP在有效性和鲁棒性方面都具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
USTEP: Structuration des logs en flux grâce à un arbre de recherche évolutif
Logs record valuable system information at runtime. They are widely used by data-driven approaches for development and monitoring purposes. Parsing log messages to structure their format is a classic preliminary step for log-mining tasks. As they appear upstream, parsing operations can become a processing time bottleneck for downstream applications. The quality of parsing also has a direct influence on their efficiency. Here, we propose USTEP, an online log parsing method based on an evolving tree structure. Evaluation results on a wide panel of datasets coming from different real-world systems demonstrate USTEP superiority in terms of both effectiveness and robustness when compared to other online methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信