{"title":"通过长读RNA测序的转录组图谱:对参考转录组的贡献","authors":"Dong Jin Lee, C. Hong","doi":"10.5772/INTECHOPEN.84920","DOIUrl":null,"url":null,"abstract":"The recent emergence of long-read transcriptome sequencing has helped improve the overall accuracy of gene prediction compared with that by short-read RNA-Seq. In addition, the technology can offer a more comprehensive view of functional genomics in uncharacterized species with an efficient full-length unigene build and high-precision gene annotation, thus being efficient in develop-ing transcriptome data resources from useful genetic pools. Hence, I will review the applications of long-read RNA isoform sequencing, including the relative merits of the technology, the improvement of the accuracy in gene prediction and gene annotation, and the full-length unigene builds in a new genome; the limitations of the technology will be also discussed. The review will be valuable in collecting data resources for functional genomic studies.","PeriodicalId":215288,"journal":{"name":"Transcriptome Analysis","volume":"69 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome Atlas by Long-Read RNA Sequencing: Contribution to a Reference Transcriptome\",\"authors\":\"Dong Jin Lee, C. Hong\",\"doi\":\"10.5772/INTECHOPEN.84920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent emergence of long-read transcriptome sequencing has helped improve the overall accuracy of gene prediction compared with that by short-read RNA-Seq. In addition, the technology can offer a more comprehensive view of functional genomics in uncharacterized species with an efficient full-length unigene build and high-precision gene annotation, thus being efficient in develop-ing transcriptome data resources from useful genetic pools. Hence, I will review the applications of long-read RNA isoform sequencing, including the relative merits of the technology, the improvement of the accuracy in gene prediction and gene annotation, and the full-length unigene builds in a new genome; the limitations of the technology will be also discussed. The review will be valuable in collecting data resources for functional genomic studies.\",\"PeriodicalId\":215288,\"journal\":{\"name\":\"Transcriptome Analysis\",\"volume\":\"69 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transcriptome Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.84920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transcriptome Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transcriptome Atlas by Long-Read RNA Sequencing: Contribution to a Reference Transcriptome
The recent emergence of long-read transcriptome sequencing has helped improve the overall accuracy of gene prediction compared with that by short-read RNA-Seq. In addition, the technology can offer a more comprehensive view of functional genomics in uncharacterized species with an efficient full-length unigene build and high-precision gene annotation, thus being efficient in develop-ing transcriptome data resources from useful genetic pools. Hence, I will review the applications of long-read RNA isoform sequencing, including the relative merits of the technology, the improvement of the accuracy in gene prediction and gene annotation, and the full-length unigene builds in a new genome; the limitations of the technology will be also discussed. The review will be valuable in collecting data resources for functional genomic studies.