收缩系数界限

A. Makur, Lizhong Zheng
{"title":"收缩系数界限","authors":"A. Makur, Lizhong Zheng","doi":"10.1109/ALLERTON.2015.7447175","DOIUrl":null,"url":null,"abstract":"In this paper, we delineate how the contraction coefficient of the strong data processing inequality for KL divergence can be used to learn likelihood models. We then present an alternative formulation that forces the input KL divergence to vanish, and achieves a contraction coefficient equivalent to the squared maximal correlation using a linear algebraic solution. To analyze the performance loss in using this simple but suboptimal procedure, we bound these coefficients in the discrete and finite regime, and prove their equivalence in the Gaussian regime.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"26 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Bounds between contraction coefficients\",\"authors\":\"A. Makur, Lizhong Zheng\",\"doi\":\"10.1109/ALLERTON.2015.7447175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we delineate how the contraction coefficient of the strong data processing inequality for KL divergence can be used to learn likelihood models. We then present an alternative formulation that forces the input KL divergence to vanish, and achieves a contraction coefficient equivalent to the squared maximal correlation using a linear algebraic solution. To analyze the performance loss in using this simple but suboptimal procedure, we bound these coefficients in the discrete and finite regime, and prove their equivalence in the Gaussian regime.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"26 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文描述了如何利用KL散度的强数据处理不等式的收缩系数来学习似然模型。然后,我们提出了一种替代公式,该公式强制输入KL散度消失,并使用线性代数解获得相当于最大相关平方的收缩系数。为了分析使用这个简单但次优过程的性能损失,我们将这些系数在离散和有限范围内进行了定界,并证明了它们在高斯范围内的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds between contraction coefficients
In this paper, we delineate how the contraction coefficient of the strong data processing inequality for KL divergence can be used to learn likelihood models. We then present an alternative formulation that forces the input KL divergence to vanish, and achieves a contraction coefficient equivalent to the squared maximal correlation using a linear algebraic solution. To analyze the performance loss in using this simple but suboptimal procedure, we bound these coefficients in the discrete and finite regime, and prove their equivalence in the Gaussian regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信