Vlasov-Poisson-Fokker-Planck系统的变分渐近保持格式

J. Carrillo, Li Wang, Wuzhe Xu, Ming Yan
{"title":"Vlasov-Poisson-Fokker-Planck系统的变分渐近保持格式","authors":"J. Carrillo, Li Wang, Wuzhe Xu, Ming Yan","doi":"10.1137/20M1350431","DOIUrl":null,"url":null,"abstract":"We design a variational asymptotic preserving scheme for the Vlasov-Poisson-Fokker-Planck system with the high field scaling, which describes the Brownian motion of a large system of particles in a surrounding bath. Our scheme builds on an implicit-explicit framework, wherein the stiff terms coming from the collision and field effects are solved implicitly while the convection terms are solved explicitly. To treat the implicit part, we propose a variational approach by viewing it as a Wasserstein gradient flow of the relative entropy, and solve it via a proximal quasi-Newton method. In so doing we get positivity and asymptotic preservation for free. The method is also massively parallelizable and thus suitable for high dimensional problems. We further show that the convergence of our implicit solver is uniform across different scales. A suite of numerical examples are presented at the end to validate the performance of the proposed scheme.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"157 1‐3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Variational Asymptotic Preserving Scheme for the Vlasov-Poisson-Fokker-Planck System\",\"authors\":\"J. Carrillo, Li Wang, Wuzhe Xu, Ming Yan\",\"doi\":\"10.1137/20M1350431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design a variational asymptotic preserving scheme for the Vlasov-Poisson-Fokker-Planck system with the high field scaling, which describes the Brownian motion of a large system of particles in a surrounding bath. Our scheme builds on an implicit-explicit framework, wherein the stiff terms coming from the collision and field effects are solved implicitly while the convection terms are solved explicitly. To treat the implicit part, we propose a variational approach by viewing it as a Wasserstein gradient flow of the relative entropy, and solve it via a proximal quasi-Newton method. In so doing we get positivity and asymptotic preservation for free. The method is also massively parallelizable and thus suitable for high dimensional problems. We further show that the convergence of our implicit solver is uniform across different scales. A suite of numerical examples are presented at the end to validate the performance of the proposed scheme.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"157 1‐3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20M1350431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20M1350431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们设计了一个高场标度Vlasov-Poisson-Fokker-Planck系统的变分渐近保持格式,它描述了一个大粒子系统在周围槽中的布朗运动。我们的方案建立在隐式-显式框架上,其中来自碰撞和场效应的刚性项被隐式求解,而对流项被显式求解。为了处理隐式部分,我们提出了一种变分方法,将其视为相对熵的Wasserstein梯度流,并通过近端拟牛顿方法求解。这样我们就得到了自由的正性和渐近守恒性。该方法还具有大规模并行性,因此适用于高维问题。进一步证明了隐式求解器在不同尺度上的收敛性是一致的。最后给出了一组数值算例来验证所提方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Asymptotic Preserving Scheme for the Vlasov-Poisson-Fokker-Planck System
We design a variational asymptotic preserving scheme for the Vlasov-Poisson-Fokker-Planck system with the high field scaling, which describes the Brownian motion of a large system of particles in a surrounding bath. Our scheme builds on an implicit-explicit framework, wherein the stiff terms coming from the collision and field effects are solved implicitly while the convection terms are solved explicitly. To treat the implicit part, we propose a variational approach by viewing it as a Wasserstein gradient flow of the relative entropy, and solve it via a proximal quasi-Newton method. In so doing we get positivity and asymptotic preservation for free. The method is also massively parallelizable and thus suitable for high dimensional problems. We further show that the convergence of our implicit solver is uniform across different scales. A suite of numerical examples are presented at the end to validate the performance of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信