可扩展概率路由

Suwei Yang, Victor Liang, Kuldeep S. Meel
{"title":"可扩展概率路由","authors":"Suwei Yang, Victor Liang, Kuldeep S. Meel","doi":"10.29007/5t69","DOIUrl":null,"url":null,"abstract":"Inference and prediction of routes have become of interest over the past decade owing to a dramatic increase in package delivery and ride-sharing services. Given the underlying combinatorial structure and the incorporation of probabilities, route prediction involves techniques from both formal methods and machine learning. One promising approach for predicting routes uses decision diagrams that are augmented with probability values. However, the effectiveness of this approach depends on the size of the compiled decision diagrams. The scalability of the approach is limited owing to its empirical runtime and space complexity. In this work, our contributions are two-fold: first, we introduce a relaxed encoding that uses a linear number of variables with respect to the number of vertices in a road network graph to significantly reduce the size of resultant decision diagrams. Secondly, instead of a stepwise sampling procedure, we propose a single pass sampling-based route prediction. In our evaluations arising from a real-world road network, we demonstrate that the resulting system achieves around twice the quality of suggested routes while being an order of magnitude faster compared to state-of-the-art.","PeriodicalId":207621,"journal":{"name":"Logic Programming and Automated Reasoning","volume":" 22","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Probabilistic Routes\",\"authors\":\"Suwei Yang, Victor Liang, Kuldeep S. Meel\",\"doi\":\"10.29007/5t69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inference and prediction of routes have become of interest over the past decade owing to a dramatic increase in package delivery and ride-sharing services. Given the underlying combinatorial structure and the incorporation of probabilities, route prediction involves techniques from both formal methods and machine learning. One promising approach for predicting routes uses decision diagrams that are augmented with probability values. However, the effectiveness of this approach depends on the size of the compiled decision diagrams. The scalability of the approach is limited owing to its empirical runtime and space complexity. In this work, our contributions are two-fold: first, we introduce a relaxed encoding that uses a linear number of variables with respect to the number of vertices in a road network graph to significantly reduce the size of resultant decision diagrams. Secondly, instead of a stepwise sampling procedure, we propose a single pass sampling-based route prediction. In our evaluations arising from a real-world road network, we demonstrate that the resulting system achieves around twice the quality of suggested routes while being an order of magnitude faster compared to state-of-the-art.\",\"PeriodicalId\":207621,\"journal\":{\"name\":\"Logic Programming and Automated Reasoning\",\"volume\":\" 22\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Programming and Automated Reasoning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/5t69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Programming and Automated Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/5t69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,由于包裹递送和拼车服务的急剧增加,路线的推断和预测已经成为人们的兴趣。考虑到潜在的组合结构和概率的结合,路线预测涉及到形式方法和机器学习的技术。一种很有前途的路线预测方法是使用带有概率值的决策图。然而,这种方法的有效性取决于编译的决策图的大小。由于经验运行时间和空间复杂性,该方法的可扩展性受到限制。在这项工作中,我们的贡献有两个方面:首先,我们引入了一种宽松的编码,该编码使用相对于道路网络图中顶点数量的线性变量,以显着减少所得决策图的大小。其次,我们提出了一种基于单次采样的路径预测方法,而不是逐步采样方法。在我们对现实世界道路网络的评估中,我们证明了所得到的系统达到了建议路线的两倍左右的质量,同时比最先进的系统快了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Probabilistic Routes
Inference and prediction of routes have become of interest over the past decade owing to a dramatic increase in package delivery and ride-sharing services. Given the underlying combinatorial structure and the incorporation of probabilities, route prediction involves techniques from both formal methods and machine learning. One promising approach for predicting routes uses decision diagrams that are augmented with probability values. However, the effectiveness of this approach depends on the size of the compiled decision diagrams. The scalability of the approach is limited owing to its empirical runtime and space complexity. In this work, our contributions are two-fold: first, we introduce a relaxed encoding that uses a linear number of variables with respect to the number of vertices in a road network graph to significantly reduce the size of resultant decision diagrams. Secondly, instead of a stepwise sampling procedure, we propose a single pass sampling-based route prediction. In our evaluations arising from a real-world road network, we demonstrate that the resulting system achieves around twice the quality of suggested routes while being an order of magnitude faster compared to state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信