{"title":"机械磁光谱学:综述","authors":"ML Corro","doi":"10.33552/MCMS.2020.03.000561","DOIUrl":null,"url":null,"abstract":"In the last years the Mechanomagnetic Spectroscopy technique has been developed from the PUCOT, improved and successfully used to study magnetic materials. In such technique, based in the reversible Villari effect, we study the magnetostriction at ultrasonic frequencies and different experimental conditions of temperature, polarizing field and stress. We will review the history, the set-up of the technique and some results obtained in different materials as rare earth Dy and ferromagnetic shape memory alloy Ni-Fe-Ga-Co.","PeriodicalId":297187,"journal":{"name":"Modern Concepts in Material Science","volume":"43 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanomagnetic Spectroscopy: A Review\",\"authors\":\"ML Corro\",\"doi\":\"10.33552/MCMS.2020.03.000561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last years the Mechanomagnetic Spectroscopy technique has been developed from the PUCOT, improved and successfully used to study magnetic materials. In such technique, based in the reversible Villari effect, we study the magnetostriction at ultrasonic frequencies and different experimental conditions of temperature, polarizing field and stress. We will review the history, the set-up of the technique and some results obtained in different materials as rare earth Dy and ferromagnetic shape memory alloy Ni-Fe-Ga-Co.\",\"PeriodicalId\":297187,\"journal\":{\"name\":\"Modern Concepts in Material Science\",\"volume\":\"43 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Concepts in Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33552/MCMS.2020.03.000561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Concepts in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33552/MCMS.2020.03.000561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the last years the Mechanomagnetic Spectroscopy technique has been developed from the PUCOT, improved and successfully used to study magnetic materials. In such technique, based in the reversible Villari effect, we study the magnetostriction at ultrasonic frequencies and different experimental conditions of temperature, polarizing field and stress. We will review the history, the set-up of the technique and some results obtained in different materials as rare earth Dy and ferromagnetic shape memory alloy Ni-Fe-Ga-Co.