基于噪声频域数据的微波结构宏观建模

D. Deschrijver, T. Dhaene
{"title":"基于噪声频域数据的微波结构宏观建模","authors":"D. Deschrijver, T. Dhaene","doi":"10.1109/MIKON.2006.4345347","DOIUrl":null,"url":null,"abstract":"Frequency-domain macromodeling tools are of paramount importance for the design and study of microwave structures. In this paper, a reliable identification method, called orthormal vector fitting method, is combined with a relaxation constraint. This leads to more accurate fitting models, in a limited amount of computation time, especially if the spectral data is contaminated with noise. Its performance is analyzed on a measurement-based example and compared to other existing approaches in the field.","PeriodicalId":315003,"journal":{"name":"2006 International Conference on Microwaves, Radar & Wireless Communications","volume":"29 S93","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Macromodeling of microwave structures based on noisy frequency-domain data\",\"authors\":\"D. Deschrijver, T. Dhaene\",\"doi\":\"10.1109/MIKON.2006.4345347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequency-domain macromodeling tools are of paramount importance for the design and study of microwave structures. In this paper, a reliable identification method, called orthormal vector fitting method, is combined with a relaxation constraint. This leads to more accurate fitting models, in a limited amount of computation time, especially if the spectral data is contaminated with noise. Its performance is analyzed on a measurement-based example and compared to other existing approaches in the field.\",\"PeriodicalId\":315003,\"journal\":{\"name\":\"2006 International Conference on Microwaves, Radar & Wireless Communications\",\"volume\":\"29 S93\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Microwaves, Radar & Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIKON.2006.4345347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microwaves, Radar & Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIKON.2006.4345347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

频域宏建模工具对于微波结构的设计和研究具有至关重要的意义。本文将一种可靠的识别方法——正交向量拟合方法与松弛约束相结合。这使得在有限的计算时间内更准确地拟合模型,特别是在光谱数据被噪声污染的情况下。通过一个基于测量的实例分析了该方法的性能,并与该领域其他现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macromodeling of microwave structures based on noisy frequency-domain data
Frequency-domain macromodeling tools are of paramount importance for the design and study of microwave structures. In this paper, a reliable identification method, called orthormal vector fitting method, is combined with a relaxation constraint. This leads to more accurate fitting models, in a limited amount of computation time, especially if the spectral data is contaminated with noise. Its performance is analyzed on a measurement-based example and compared to other existing approaches in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信