{"title":"DBkWik:来自数千个wiki的整合知识图谱","authors":"S. Hertling, Heiko Paulheim","doi":"10.1109/ICBK.2018.00011","DOIUrl":null,"url":null,"abstract":"Popular knowledge graphs such as DBpedia and YAGO are built from Wikipedia, and therefore similar in coverage. In contrast, Wikifarms like Fandom contain Wikis for specific topics, which are often complementary to the information contained in Wikipedia, and thus DBpedia and YAGO. Extracting these Wikis with the DBpedia extraction framework is possible, but results in many isolated knowledge graphs. In this paper, we show how to create one consolidated knowledge graph, called DBkWik, from thousands of Wikis. We perform entity resolution and schema matching, and show that the resulting large-scale knowledge graph is complementary to DBpedia.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"17 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"DBkWik: A Consolidated Knowledge Graph from Thousands of Wikis\",\"authors\":\"S. Hertling, Heiko Paulheim\",\"doi\":\"10.1109/ICBK.2018.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Popular knowledge graphs such as DBpedia and YAGO are built from Wikipedia, and therefore similar in coverage. In contrast, Wikifarms like Fandom contain Wikis for specific topics, which are often complementary to the information contained in Wikipedia, and thus DBpedia and YAGO. Extracting these Wikis with the DBpedia extraction framework is possible, but results in many isolated knowledge graphs. In this paper, we show how to create one consolidated knowledge graph, called DBkWik, from thousands of Wikis. We perform entity resolution and schema matching, and show that the resulting large-scale knowledge graph is complementary to DBpedia.\",\"PeriodicalId\":144958,\"journal\":{\"name\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"17 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2018.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DBkWik: A Consolidated Knowledge Graph from Thousands of Wikis
Popular knowledge graphs such as DBpedia and YAGO are built from Wikipedia, and therefore similar in coverage. In contrast, Wikifarms like Fandom contain Wikis for specific topics, which are often complementary to the information contained in Wikipedia, and thus DBpedia and YAGO. Extracting these Wikis with the DBpedia extraction framework is possible, but results in many isolated knowledge graphs. In this paper, we show how to create one consolidated knowledge graph, called DBkWik, from thousands of Wikis. We perform entity resolution and schema matching, and show that the resulting large-scale knowledge graph is complementary to DBpedia.