用于连续水质监测的误报减少系统

A. Bria, L. Ferrigno, L. Gerevini, C. Marrocco, M. Molinara, P. Bruschi, M. Cicalini, G. Manfredini, Andrea Ria, G. Cerro, R. Simmarano, Giovanni Teolis, M. Vitelli
{"title":"用于连续水质监测的误报减少系统","authors":"A. Bria, L. Ferrigno, L. Gerevini, C. Marrocco, M. Molinara, P. Bruschi, M. Cicalini, G. Manfredini, Andrea Ria, G. Cerro, R. Simmarano, Giovanni Teolis, M. Vitelli","doi":"10.1109/SMARTCOMP52413.2021.00065","DOIUrl":null,"url":null,"abstract":"Water monitoring systems continuously working ensure real–time pollutant detection capabilities according to their sensitivity and specificity. It is necessary to balance such features because, although being able to sense several substances is a desired feature, the reduction of false positives is a primary goal a classification system should have. High false positive makes the system unusable. The current solution enables a 24/7 service with a sampling rate equal to 0.6 Hz. Our goal is to limit false positives to 1 per day, thus achieving 99.99% accuracy at least. In this paper, we add a false positive reduction module to our pre-existent system, aiming to manage false positive boosters as sensor drift and signal oscillations. Obtained results, using a Multi Layer Perceptron classifier, confirm the false positive reduction while keeping high true positive rates.","PeriodicalId":330785,"journal":{"name":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":" 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A False Positive Reduction System For Continuous Water Quality Monitoring\",\"authors\":\"A. Bria, L. Ferrigno, L. Gerevini, C. Marrocco, M. Molinara, P. Bruschi, M. Cicalini, G. Manfredini, Andrea Ria, G. Cerro, R. Simmarano, Giovanni Teolis, M. Vitelli\",\"doi\":\"10.1109/SMARTCOMP52413.2021.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water monitoring systems continuously working ensure real–time pollutant detection capabilities according to their sensitivity and specificity. It is necessary to balance such features because, although being able to sense several substances is a desired feature, the reduction of false positives is a primary goal a classification system should have. High false positive makes the system unusable. The current solution enables a 24/7 service with a sampling rate equal to 0.6 Hz. Our goal is to limit false positives to 1 per day, thus achieving 99.99% accuracy at least. In this paper, we add a false positive reduction module to our pre-existent system, aiming to manage false positive boosters as sensor drift and signal oscillations. Obtained results, using a Multi Layer Perceptron classifier, confirm the false positive reduction while keeping high true positive rates.\",\"PeriodicalId\":330785,\"journal\":{\"name\":\"2021 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\" 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP52413.2021.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP52413.2021.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

连续工作的水监测系统根据其灵敏度和特异性确保了实时污染物检测能力。平衡这些特征是必要的,因为尽管能够感知多种物质是期望的特征,但减少误报是分类系统应该具有的主要目标。高误报使系统不可用。目前的解决方案支持24/7的服务,采样率为0.6 Hz。我们的目标是将误报限制在每天1次,从而至少达到99.99%的准确率。在本文中,我们在已有的系统中增加了一个假阳性减少模块,旨在管理假阳性助推器作为传感器漂移和信号振荡。得到的结果,使用多层感知器分类器,确认假阳性减少,同时保持高真阳性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A False Positive Reduction System For Continuous Water Quality Monitoring
Water monitoring systems continuously working ensure real–time pollutant detection capabilities according to their sensitivity and specificity. It is necessary to balance such features because, although being able to sense several substances is a desired feature, the reduction of false positives is a primary goal a classification system should have. High false positive makes the system unusable. The current solution enables a 24/7 service with a sampling rate equal to 0.6 Hz. Our goal is to limit false positives to 1 per day, thus achieving 99.99% accuracy at least. In this paper, we add a false positive reduction module to our pre-existent system, aiming to manage false positive boosters as sensor drift and signal oscillations. Obtained results, using a Multi Layer Perceptron classifier, confirm the false positive reduction while keeping high true positive rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信