{"title":"基于GPS数据的VLBI相位参考对流层校正方法","authors":"Bo Zhang, Xing-wu Zheng, Jinling Li, Ye Xu","doi":"10.1088/1009-9271/8/1/14","DOIUrl":null,"url":null,"abstract":"The dominant source of error in VLBI phase-referencing is the troposphere at observing frequencies above 5 GHz. We compare the tropospheric zenith delays derived from VLBI and GPS data at VLBA stations collocated with GPS antennas. The systematic biases and standard deviations both are at the level of sub-centimeter. Based on this agreement, we suggest a new method of tropospheric correction in phase-referencing using combined VLBI and GPS data.","PeriodicalId":124495,"journal":{"name":"Chinese Journal of Astronomy and Astrophysics","volume":"5 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Approach of Tropospheric Correction for VLBI Phase-Referencing using GPS Data\",\"authors\":\"Bo Zhang, Xing-wu Zheng, Jinling Li, Ye Xu\",\"doi\":\"10.1088/1009-9271/8/1/14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dominant source of error in VLBI phase-referencing is the troposphere at observing frequencies above 5 GHz. We compare the tropospheric zenith delays derived from VLBI and GPS data at VLBA stations collocated with GPS antennas. The systematic biases and standard deviations both are at the level of sub-centimeter. Based on this agreement, we suggest a new method of tropospheric correction in phase-referencing using combined VLBI and GPS data.\",\"PeriodicalId\":124495,\"journal\":{\"name\":\"Chinese Journal of Astronomy and Astrophysics\",\"volume\":\"5 14\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Astronomy and Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1009-9271/8/1/14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1009-9271/8/1/14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Approach of Tropospheric Correction for VLBI Phase-Referencing using GPS Data
The dominant source of error in VLBI phase-referencing is the troposphere at observing frequencies above 5 GHz. We compare the tropospheric zenith delays derived from VLBI and GPS data at VLBA stations collocated with GPS antennas. The systematic biases and standard deviations both are at the level of sub-centimeter. Based on this agreement, we suggest a new method of tropospheric correction in phase-referencing using combined VLBI and GPS data.