驱动无源光学谐振器中滤波器诱导的调制不稳定性理论

A. Perego, A. Mussot, M. Conforti
{"title":"驱动无源光学谐振器中滤波器诱导的调制不稳定性理论","authors":"A. Perego, A. Mussot, M. Conforti","doi":"10.1103/PHYSREVA.103.013522","DOIUrl":null,"url":null,"abstract":"We present the theory of modulation instability induced by spectrally dependent losses (optical filters) in passive driven nonlinear fiber ring resonators. Starting from an Ikeda map description of the propagation equation and boundary conditions, we derive a mean field model - a generalised Lugiato-Lefever equation - which reproduces with great accuracy the predictions of the map. The effects on instability gain and comb generation of the different control parameters such as dispersion, cavity detuning, filter spectral position and bandwidth are discussed.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"104 44","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Theory of filter-induced modulation instability in driven passive optical resonators\",\"authors\":\"A. Perego, A. Mussot, M. Conforti\",\"doi\":\"10.1103/PHYSREVA.103.013522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the theory of modulation instability induced by spectrally dependent losses (optical filters) in passive driven nonlinear fiber ring resonators. Starting from an Ikeda map description of the propagation equation and boundary conditions, we derive a mean field model - a generalised Lugiato-Lefever equation - which reproduces with great accuracy the predictions of the map. The effects on instability gain and comb generation of the different control parameters such as dispersion, cavity detuning, filter spectral position and bandwidth are discussed.\",\"PeriodicalId\":304443,\"journal\":{\"name\":\"arXiv: Optics\",\"volume\":\"104 44\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVA.103.013522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVA.103.013522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了无源驱动非线性光纤环形谐振器中频谱相关损耗(滤光片)引起的调制不稳定性理论。从Ikeda图对传播方程和边界条件的描述开始,我们推导出一个平均场模型——一个广义的Lugiato-Lefever方程——它非常准确地再现了图的预测。讨论了色散、空腔失谐、滤波器频谱位置和带宽等不同控制参数对不稳定增益和梳状产生的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theory of filter-induced modulation instability in driven passive optical resonators
We present the theory of modulation instability induced by spectrally dependent losses (optical filters) in passive driven nonlinear fiber ring resonators. Starting from an Ikeda map description of the propagation equation and boundary conditions, we derive a mean field model - a generalised Lugiato-Lefever equation - which reproduces with great accuracy the predictions of the map. The effects on instability gain and comb generation of the different control parameters such as dispersion, cavity detuning, filter spectral position and bandwidth are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信