{"title":"用SMOTE克服性骚扰分类中的数据不平衡问题","authors":"Aji Gautama Putrada, Irfan Dwi Wijaya, Dita Oktaria","doi":"10.21108/ijoict.v8i1.622","DOIUrl":null,"url":null,"abstract":"Delivery of justice with the help of artificial intelligence is a current research interest. Machine learning with natural language processing (NLP) can classify the types of sexual harassment experiences into quid pro quo (QPQ) and hostile work environments (HWE). However, imbalanced data are often present in classes of sexual harassment classification on specific datasets. Data imbalance can cause a decrease in the classifier's performance because it usually tends to choose the majority class. This study proposes the implementation and performance evaluation of the synthetic minority over-sampling technique (SMOTE) to improve the QPQ and HWE harassment classifications in the sexual harassment experience dataset. The term frequency-inverse document frequency (TF-IDF) method applies document weighting in the classification process. Then, we compare naïve Bayes with K-Nearest Neighbor (KNN) in classifying sexual harassment experiences. The comparison shows that the performance of the naïve Bayes classifier is superior to the KNN classifier in classifying QPQ and HWE, with AUC values of 0.95 versus 0.92, respectively. The evaluation results show that by applying the SMOTE method to the naïve Bayes classifier, the precision of the minority class can increase from 74% to 90%.","PeriodicalId":137090,"journal":{"name":"International Journal on Information and Communication Technology (IJoICT)","volume":"64 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Overcoming Data Imbalance Problems in Sexual Harassment Classification with SMOTE\",\"authors\":\"Aji Gautama Putrada, Irfan Dwi Wijaya, Dita Oktaria\",\"doi\":\"10.21108/ijoict.v8i1.622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delivery of justice with the help of artificial intelligence is a current research interest. Machine learning with natural language processing (NLP) can classify the types of sexual harassment experiences into quid pro quo (QPQ) and hostile work environments (HWE). However, imbalanced data are often present in classes of sexual harassment classification on specific datasets. Data imbalance can cause a decrease in the classifier's performance because it usually tends to choose the majority class. This study proposes the implementation and performance evaluation of the synthetic minority over-sampling technique (SMOTE) to improve the QPQ and HWE harassment classifications in the sexual harassment experience dataset. The term frequency-inverse document frequency (TF-IDF) method applies document weighting in the classification process. Then, we compare naïve Bayes with K-Nearest Neighbor (KNN) in classifying sexual harassment experiences. The comparison shows that the performance of the naïve Bayes classifier is superior to the KNN classifier in classifying QPQ and HWE, with AUC values of 0.95 versus 0.92, respectively. The evaluation results show that by applying the SMOTE method to the naïve Bayes classifier, the precision of the minority class can increase from 74% to 90%.\",\"PeriodicalId\":137090,\"journal\":{\"name\":\"International Journal on Information and Communication Technology (IJoICT)\",\"volume\":\"64 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Information and Communication Technology (IJoICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21108/ijoict.v8i1.622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information and Communication Technology (IJoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21108/ijoict.v8i1.622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overcoming Data Imbalance Problems in Sexual Harassment Classification with SMOTE
Delivery of justice with the help of artificial intelligence is a current research interest. Machine learning with natural language processing (NLP) can classify the types of sexual harassment experiences into quid pro quo (QPQ) and hostile work environments (HWE). However, imbalanced data are often present in classes of sexual harassment classification on specific datasets. Data imbalance can cause a decrease in the classifier's performance because it usually tends to choose the majority class. This study proposes the implementation and performance evaluation of the synthetic minority over-sampling technique (SMOTE) to improve the QPQ and HWE harassment classifications in the sexual harassment experience dataset. The term frequency-inverse document frequency (TF-IDF) method applies document weighting in the classification process. Then, we compare naïve Bayes with K-Nearest Neighbor (KNN) in classifying sexual harassment experiences. The comparison shows that the performance of the naïve Bayes classifier is superior to the KNN classifier in classifying QPQ and HWE, with AUC values of 0.95 versus 0.92, respectively. The evaluation results show that by applying the SMOTE method to the naïve Bayes classifier, the precision of the minority class can increase from 74% to 90%.