求解椭圆型偏微分方程的一种新方法

Nurcan Baykuş Savaşaneril
{"title":"求解椭圆型偏微分方程的一种新方法","authors":"Nurcan Baykuş Savaşaneril","doi":"10.52460/issc.2023.030","DOIUrl":null,"url":null,"abstract":"The study proposes a matrix method based on collocation points and Taylor polynomials for approximating the solution of elliptic partial differential equations. This method reduces the problem to solving a matrix equation with unknown Taylor coefficients, which are determined using the collocation points. The solution is then expressed in terms of Taylor polynomials. The technique is illustrated using a descriptive example, and the results are compared with a table and figure. The numerical calculations are performed using a program written in WOLFRAM MATHEMATICA 13.0.","PeriodicalId":138273,"journal":{"name":"7th International Students Science Congress Proceedings Book","volume":"76 15","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Method for Elliptic Partial Differential Equations\",\"authors\":\"Nurcan Baykuş Savaşaneril\",\"doi\":\"10.52460/issc.2023.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study proposes a matrix method based on collocation points and Taylor polynomials for approximating the solution of elliptic partial differential equations. This method reduces the problem to solving a matrix equation with unknown Taylor coefficients, which are determined using the collocation points. The solution is then expressed in terms of Taylor polynomials. The technique is illustrated using a descriptive example, and the results are compared with a table and figure. The numerical calculations are performed using a program written in WOLFRAM MATHEMATICA 13.0.\",\"PeriodicalId\":138273,\"journal\":{\"name\":\"7th International Students Science Congress Proceedings Book\",\"volume\":\"76 15\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Students Science Congress Proceedings Book\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52460/issc.2023.030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Students Science Congress Proceedings Book","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52460/issc.2023.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于搭配点和泰勒多项式的矩阵逼近椭圆型偏微分方程解的方法。该方法将问题简化为求解具有未知泰勒系数的矩阵方程,泰勒系数由并置点确定。然后用泰勒多项式表示解。用一个描述性的例子说明了该技术,并将结果与表格和图进行了比较。数值计算采用WOLFRAM MATHEMATICA 13.0编写的程序进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Method for Elliptic Partial Differential Equations
The study proposes a matrix method based on collocation points and Taylor polynomials for approximating the solution of elliptic partial differential equations. This method reduces the problem to solving a matrix equation with unknown Taylor coefficients, which are determined using the collocation points. The solution is then expressed in terms of Taylor polynomials. The technique is illustrated using a descriptive example, and the results are compared with a table and figure. The numerical calculations are performed using a program written in WOLFRAM MATHEMATICA 13.0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信