谐波信号检测算法与二阶自回归海杂波模型的综合

I. Prokopenko, V. Vovk, K. Prokopenko
{"title":"谐波信号检测算法与二阶自回归海杂波模型的综合","authors":"I. Prokopenko, V. Vovk, K. Prokopenko","doi":"10.23919/IRS.2018.8448064","DOIUrl":null,"url":null,"abstract":"A short-time autocorrelation function of reflections from sea surface can be described by exp-cosine model. It means that such reflections can be modeled as secondorder autoregressive (AR) process. We synthesize optimal algorithm for detection of harmonic signal with known frequency and unknown phase in correlated sea clutter; AR model parameters can be estimated either from clutter model or directly from measured data. This algorithm can be used for detection of high-speed targets in sea clutter by centimeter-wave radar.","PeriodicalId":436201,"journal":{"name":"2018 19th International Radar Symposium (IRS)","volume":"127 36","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Detection Algorithm for Harmonic Signal and Second-Order Autoregressive Sea Clutter Model\",\"authors\":\"I. Prokopenko, V. Vovk, K. Prokopenko\",\"doi\":\"10.23919/IRS.2018.8448064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A short-time autocorrelation function of reflections from sea surface can be described by exp-cosine model. It means that such reflections can be modeled as secondorder autoregressive (AR) process. We synthesize optimal algorithm for detection of harmonic signal with known frequency and unknown phase in correlated sea clutter; AR model parameters can be estimated either from clutter model or directly from measured data. This algorithm can be used for detection of high-speed targets in sea clutter by centimeter-wave radar.\",\"PeriodicalId\":436201,\"journal\":{\"name\":\"2018 19th International Radar Symposium (IRS)\",\"volume\":\"127 36\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th International Radar Symposium (IRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IRS.2018.8448064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2018.8448064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海面反射的短时自相关函数可用exp-余弦模型来描述。这意味着这种反射可以建模为二阶自回归(AR)过程。综合了相关海杂波中已知频率未知相位谐波信号的最优检测算法;AR模型参数既可以从杂波模型中估计,也可以直接从实测数据中估计。该算法可用于厘米波雷达对海杂波中高速目标的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Detection Algorithm for Harmonic Signal and Second-Order Autoregressive Sea Clutter Model
A short-time autocorrelation function of reflections from sea surface can be described by exp-cosine model. It means that such reflections can be modeled as secondorder autoregressive (AR) process. We synthesize optimal algorithm for detection of harmonic signal with known frequency and unknown phase in correlated sea clutter; AR model parameters can be estimated either from clutter model or directly from measured data. This algorithm can be used for detection of high-speed targets in sea clutter by centimeter-wave radar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信