大的贝叶斯var

Marta Bańbura, D. Giannone, L. Reichlin
{"title":"大的贝叶斯var","authors":"Marta Bańbura, D. Giannone, L. Reichlin","doi":"10.2139/ssrn.1292332","DOIUrl":null,"url":null,"abstract":"This paper shows that Vector Autoregression with Bayesian shrinkage is an appropriate tool for large dynamic models. We build on the results by De Mol, Giannone, and Reichlin (2008) and show that, when the degree of shrinkage is set in relation to the cross-sectional dimension, the forecasting performance of small monetary VARs can be improved by adding additional macroeconomic variables and sectoral information. In addition, we show that large VARs with shrinkage produce credible impulse responses and are suitable for structural analysis.","PeriodicalId":269524,"journal":{"name":"ECB: Working Paper Series (Topic)","volume":"47 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"268","resultStr":"{\"title\":\"Large Bayesian VARs\",\"authors\":\"Marta Bańbura, D. Giannone, L. Reichlin\",\"doi\":\"10.2139/ssrn.1292332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows that Vector Autoregression with Bayesian shrinkage is an appropriate tool for large dynamic models. We build on the results by De Mol, Giannone, and Reichlin (2008) and show that, when the degree of shrinkage is set in relation to the cross-sectional dimension, the forecasting performance of small monetary VARs can be improved by adding additional macroeconomic variables and sectoral information. In addition, we show that large VARs with shrinkage produce credible impulse responses and are suitable for structural analysis.\",\"PeriodicalId\":269524,\"journal\":{\"name\":\"ECB: Working Paper Series (Topic)\",\"volume\":\"47 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"268\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECB: Working Paper Series (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1292332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECB: Working Paper Series (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1292332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 268

摘要

本文表明,贝叶斯收缩向量自回归是处理大型动态模型的合适工具。我们以De Mol、Giannone和Reichlin(2008)的结果为基础,并表明,当收缩程度与横截面维度相关时,可以通过添加额外的宏观经济变量和部门信息来改善小额货币var的预测性能。此外,我们表明,具有收缩的大var产生可信的脉冲响应,适合于结构分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Bayesian VARs
This paper shows that Vector Autoregression with Bayesian shrinkage is an appropriate tool for large dynamic models. We build on the results by De Mol, Giannone, and Reichlin (2008) and show that, when the degree of shrinkage is set in relation to the cross-sectional dimension, the forecasting performance of small monetary VARs can be improved by adding additional macroeconomic variables and sectoral information. In addition, we show that large VARs with shrinkage produce credible impulse responses and are suitable for structural analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信