基于声学和非线性特征的电话语音情感识别

S. Bedoya-Jaramillo, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla
{"title":"基于声学和非线性特征的电话语音情感识别","authors":"S. Bedoya-Jaramillo, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla","doi":"10.1109/CCST.2013.6922055","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of the automatic recognition of emotional states from speech recordings, especially those kind of emotions reflecting that the life or the human integrity are at risk. The paper compares the performance of two different systems: one being fed with speech signals recorded directly from the people (whole spectrum) and other one in which the speech signals are recorded through a telephone channel. The characterization stage is based on cepstral, noise and nonlinear features, and the classification strategy uses a fusion of multiple classifiers (Gaussian Mixture Models - Universal Background Model and Support Vector Machines). The proposed system achieves classification rates around 99%, even in the case of telephone speech.","PeriodicalId":243791,"journal":{"name":"2013 47th International Carnahan Conference on Security Technology (ICCST)","volume":"29 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Emotion recognition from telephone speech using acoustic and nonlinear features\",\"authors\":\"S. Bedoya-Jaramillo, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla\",\"doi\":\"10.1109/CCST.2013.6922055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of the automatic recognition of emotional states from speech recordings, especially those kind of emotions reflecting that the life or the human integrity are at risk. The paper compares the performance of two different systems: one being fed with speech signals recorded directly from the people (whole spectrum) and other one in which the speech signals are recorded through a telephone channel. The characterization stage is based on cepstral, noise and nonlinear features, and the classification strategy uses a fusion of multiple classifiers (Gaussian Mixture Models - Universal Background Model and Support Vector Machines). The proposed system achieves classification rates around 99%, even in the case of telephone speech.\",\"PeriodicalId\":243791,\"journal\":{\"name\":\"2013 47th International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"29 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 47th International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2013.6922055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2013.6922055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了语音记录中情绪状态的自动识别问题,特别是那些反映生命或人格受到威胁的情绪。本文比较了两种不同系统的性能:一种是直接从人那里记录语音信号(全频谱),另一种是通过电话信道记录语音信号。表征阶段基于倒谱、噪声和非线性特征,分类策略使用多个分类器(高斯混合模型-通用背景模型和支持向量机)的融合。即使在电话语音的情况下,所提出的系统也实现了99%左右的分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion recognition from telephone speech using acoustic and nonlinear features
This paper addresses the problem of the automatic recognition of emotional states from speech recordings, especially those kind of emotions reflecting that the life or the human integrity are at risk. The paper compares the performance of two different systems: one being fed with speech signals recorded directly from the people (whole spectrum) and other one in which the speech signals are recorded through a telephone channel. The characterization stage is based on cepstral, noise and nonlinear features, and the classification strategy uses a fusion of multiple classifiers (Gaussian Mixture Models - Universal Background Model and Support Vector Machines). The proposed system achieves classification rates around 99%, even in the case of telephone speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信