基于深度学习的缺失物体检测与人识别:智能CCTV的应用

R. Dharmik, Sushilkumar Chavhan, S. Sathe
{"title":"基于深度学习的缺失物体检测与人识别:智能CCTV的应用","authors":"R. Dharmik, Sushilkumar Chavhan, S. Sathe","doi":"10.17993/3ctecno.2022.v11n2e42.51-57","DOIUrl":null,"url":null,"abstract":"Security and protection are the most crucial concerns in today’s quickly developing world. Deep Learning methods and computer vision assist in resolving both problems. One of the computer vision subtasks that allows us to recognise things is object detection. Videos are a source that is taken into account for detection, and image processing technology helps to increase the effectiveness of state-ofthe-art techniques. With all of these technologies, CCTV is recognised as a key element. Using a deep convolutional neural network, we accept CCTV data in real time in this article. The main objective is to make content the centre of things. Using the YOLO technique, we were able to detect the missing item with an improvement of 10% sparsity over the current state-of-the-art algorithm in the context of surveillance systems, where object detection is a crucial step. It can be utilised to take immediate additional action.","PeriodicalId":210685,"journal":{"name":"3C Tecnología_Glosas de innovación aplicadas a la pyme","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep learning based missing object detection and person identification: an application for smart CCTV\",\"authors\":\"R. Dharmik, Sushilkumar Chavhan, S. Sathe\",\"doi\":\"10.17993/3ctecno.2022.v11n2e42.51-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security and protection are the most crucial concerns in today’s quickly developing world. Deep Learning methods and computer vision assist in resolving both problems. One of the computer vision subtasks that allows us to recognise things is object detection. Videos are a source that is taken into account for detection, and image processing technology helps to increase the effectiveness of state-ofthe-art techniques. With all of these technologies, CCTV is recognised as a key element. Using a deep convolutional neural network, we accept CCTV data in real time in this article. The main objective is to make content the centre of things. Using the YOLO technique, we were able to detect the missing item with an improvement of 10% sparsity over the current state-of-the-art algorithm in the context of surveillance systems, where object detection is a crucial step. It can be utilised to take immediate additional action.\",\"PeriodicalId\":210685,\"journal\":{\"name\":\"3C Tecnología_Glosas de innovación aplicadas a la pyme\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C Tecnología_Glosas de innovación aplicadas a la pyme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctecno.2022.v11n2e42.51-57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Tecnología_Glosas de innovación aplicadas a la pyme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctecno.2022.v11n2e42.51-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

安全和保护是当今快速发展的世界最重要的问题。深度学习方法和计算机视觉有助于解决这两个问题。让我们识别事物的计算机视觉子任务之一是物体检测。视频是一种用于检测的来源,图像处理技术有助于提高最先进技术的有效性。有了所有这些技术,闭路电视被认为是一个关键因素。本文采用深度卷积神经网络对CCTV数据进行实时接收。主要目标是使内容成为事物的中心。使用YOLO技术,我们能够检测到缺失的物品,比目前最先进的监控系统算法的稀疏度提高10%,其中物体检测是至关重要的一步。它可以用来立即采取额外行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning based missing object detection and person identification: an application for smart CCTV
Security and protection are the most crucial concerns in today’s quickly developing world. Deep Learning methods and computer vision assist in resolving both problems. One of the computer vision subtasks that allows us to recognise things is object detection. Videos are a source that is taken into account for detection, and image processing technology helps to increase the effectiveness of state-ofthe-art techniques. With all of these technologies, CCTV is recognised as a key element. Using a deep convolutional neural network, we accept CCTV data in real time in this article. The main objective is to make content the centre of things. Using the YOLO technique, we were able to detect the missing item with an improvement of 10% sparsity over the current state-of-the-art algorithm in the context of surveillance systems, where object detection is a crucial step. It can be utilised to take immediate additional action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信