基于遗传算法和指数平滑法的备件消耗组合预测

Guo Feng, Liu Chen-yu, Zhou Bin, Zhang Su-qin
{"title":"基于遗传算法和指数平滑法的备件消耗组合预测","authors":"Guo Feng, Liu Chen-yu, Zhou Bin, Zhang Su-qin","doi":"10.1109/ISCID.2012.201","DOIUrl":null,"url":null,"abstract":"In view of the characteristics that the linear exponential smoothing, secondary exponential smoothing, cubic exponential smoothing had different fitting degree when predicted the spares with the different consumption discipline, optimized results of these three methods through the combination prediction model, and solved it by genetic algorithm and used the obtained results with minimum error as spares consumption quota. the prediction results show that the model predicts accurately, with high utility and promotion.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"76 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spares Consumption Combination Forecasting Based on Genetic Algorithm and Exponential Smoothing Method\",\"authors\":\"Guo Feng, Liu Chen-yu, Zhou Bin, Zhang Su-qin\",\"doi\":\"10.1109/ISCID.2012.201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the characteristics that the linear exponential smoothing, secondary exponential smoothing, cubic exponential smoothing had different fitting degree when predicted the spares with the different consumption discipline, optimized results of these three methods through the combination prediction model, and solved it by genetic algorithm and used the obtained results with minimum error as spares consumption quota. the prediction results show that the model predicts accurately, with high utility and promotion.\",\"PeriodicalId\":246432,\"journal\":{\"name\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"volume\":\"76 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2012.201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对线性指数平滑法、二次指数平滑法、三次指数平滑法在预测不同消耗规律的备件时拟合程度不同的特点,通过组合预测模型对这三种方法的结果进行优化,并采用遗传算法进行求解,得到的结果误差最小作为备件消耗定额。预测结果表明,该模型预测准确,具有较高的实用性和推广价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spares Consumption Combination Forecasting Based on Genetic Algorithm and Exponential Smoothing Method
In view of the characteristics that the linear exponential smoothing, secondary exponential smoothing, cubic exponential smoothing had different fitting degree when predicted the spares with the different consumption discipline, optimized results of these three methods through the combination prediction model, and solved it by genetic algorithm and used the obtained results with minimum error as spares consumption quota. the prediction results show that the model predicts accurately, with high utility and promotion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信