基于视觉显著性的静态和动态图像抽象

Jie Song, Dan Xu
{"title":"基于视觉显著性的静态和动态图像抽象","authors":"Jie Song, Dan Xu","doi":"10.1109/ICDH.2012.15","DOIUrl":null,"url":null,"abstract":"Reliable estimation of visual perception reflects understanding of the meaningful structure in an image. The paper describes a complete abstraction framework for static and dynamic images that explicitly responds to this goal, stylizes the corresponding salient and non-salient part differently by an edge preserving filter at a time while keep harmonious transition between the two parts. First, this paper introduces an automatic salient object segmentation algorithm to distinguish salient regions, and it is a saliency computation based local spatial neighbors. Taking into account the actual needs, the paper provides an interactive technology, this can be convenient for specifying image salient structure information on purpose. Based on the generated salient information mask, the paper then uses single-scale an isotropic filter to process the salient part, and use multi-scale an isotropic filter to process the non-salient part so that can implement a strong abstraction effect. Proposed method generates a kind of image and video abstraction that it represents a preferable visual effect. Experiments show that our algorithm could get the desired effect for processing a certain number of images and videos.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"52 46","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstraction for Static and Dynamic Images Based on Visual Saliency\",\"authors\":\"Jie Song, Dan Xu\",\"doi\":\"10.1109/ICDH.2012.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable estimation of visual perception reflects understanding of the meaningful structure in an image. The paper describes a complete abstraction framework for static and dynamic images that explicitly responds to this goal, stylizes the corresponding salient and non-salient part differently by an edge preserving filter at a time while keep harmonious transition between the two parts. First, this paper introduces an automatic salient object segmentation algorithm to distinguish salient regions, and it is a saliency computation based local spatial neighbors. Taking into account the actual needs, the paper provides an interactive technology, this can be convenient for specifying image salient structure information on purpose. Based on the generated salient information mask, the paper then uses single-scale an isotropic filter to process the salient part, and use multi-scale an isotropic filter to process the non-salient part so that can implement a strong abstraction effect. Proposed method generates a kind of image and video abstraction that it represents a preferable visual effect. Experiments show that our algorithm could get the desired effect for processing a certain number of images and videos.\",\"PeriodicalId\":308799,\"journal\":{\"name\":\"2012 Fourth International Conference on Digital Home\",\"volume\":\"52 46\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Digital Home\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH.2012.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉感知的可靠估计反映了对图像中有意义结构的理解。本文描述了一个完整的静态和动态图像抽象框架,明确响应这一目标,通过边缘保持滤波器对相应的显著和非显著部分进行不同的风格化,同时保持两部分之间的和谐过渡。首先,本文引入了一种自动显著性目标分割算法来区分显著性区域,这是一种基于局部空间邻域的显著性计算。考虑到实际需要,本文提供了一种交互技术,可以方便地有目的地指定图像显著结构信息。在生成显著信息掩模的基础上,采用单尺度各向同性滤波器对显著部分进行处理,采用多尺度各向同性滤波器对非显著部分进行处理,实现了较强的抽象效果。该方法生成了一种具有较好视觉效果的图像和视频抽象。实验表明,对于处理一定数量的图像和视频,我们的算法能够达到预期的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstraction for Static and Dynamic Images Based on Visual Saliency
Reliable estimation of visual perception reflects understanding of the meaningful structure in an image. The paper describes a complete abstraction framework for static and dynamic images that explicitly responds to this goal, stylizes the corresponding salient and non-salient part differently by an edge preserving filter at a time while keep harmonious transition between the two parts. First, this paper introduces an automatic salient object segmentation algorithm to distinguish salient regions, and it is a saliency computation based local spatial neighbors. Taking into account the actual needs, the paper provides an interactive technology, this can be convenient for specifying image salient structure information on purpose. Based on the generated salient information mask, the paper then uses single-scale an isotropic filter to process the salient part, and use multi-scale an isotropic filter to process the non-salient part so that can implement a strong abstraction effect. Proposed method generates a kind of image and video abstraction that it represents a preferable visual effect. Experiments show that our algorithm could get the desired effect for processing a certain number of images and videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信