用多标签文本分类从职位描述中预测职位名称

H. Tran, Hanh Hong-Phuc Vo, Son T. Luu
{"title":"用多标签文本分类从职位描述中预测职位名称","authors":"H. Tran, Hanh Hong-Phuc Vo, Son T. Luu","doi":"10.1109/NICS54270.2021.9701541","DOIUrl":null,"url":null,"abstract":"Finding a suitable job and hunting for eligible candidates are important to job seeking and human resource agencies. With the vast information about job descriptions, employees and employers need assistance to automatically detect job titles based on job description texts. In this paper, we propose the multi-label classification approach for predicting relevant job titles from job description texts, and implement the Bi-GRULSTM-CNN with different pre-trained language models to apply for the job titles prediction problem. The BERT with multilingual pre-trained model obtains the highest result by Fl-scores on both development and test sets, which are 62.20% on the development set, and 47.44% on the test set.","PeriodicalId":296963,"journal":{"name":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"11 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Predicting Job Titles from Job Descriptions with Multi-label Text Classification\",\"authors\":\"H. Tran, Hanh Hong-Phuc Vo, Son T. Luu\",\"doi\":\"10.1109/NICS54270.2021.9701541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding a suitable job and hunting for eligible candidates are important to job seeking and human resource agencies. With the vast information about job descriptions, employees and employers need assistance to automatically detect job titles based on job description texts. In this paper, we propose the multi-label classification approach for predicting relevant job titles from job description texts, and implement the Bi-GRULSTM-CNN with different pre-trained language models to apply for the job titles prediction problem. The BERT with multilingual pre-trained model obtains the highest result by Fl-scores on both development and test sets, which are 62.20% on the development set, and 47.44% on the test set.\",\"PeriodicalId\":296963,\"journal\":{\"name\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"11 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS54270.2021.9701541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS54270.2021.9701541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

找到一份合适的工作和寻找合格的候选人对求职和人力资源机构来说很重要。有了大量的职位描述信息,雇员和雇主需要帮助来根据职位描述文本自动识别职位名称。在本文中,我们提出了从职位描述文本中预测相关职位的多标签分类方法,并使用不同的预训练语言模型实现Bi-GRULSTM-CNN来应用于职位预测问题。多语言预训练模型的BERT在开发集和测试集上的fl得分最高,开发集为62.20%,测试集为47.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Job Titles from Job Descriptions with Multi-label Text Classification
Finding a suitable job and hunting for eligible candidates are important to job seeking and human resource agencies. With the vast information about job descriptions, employees and employers need assistance to automatically detect job titles based on job description texts. In this paper, we propose the multi-label classification approach for predicting relevant job titles from job description texts, and implement the Bi-GRULSTM-CNN with different pre-trained language models to apply for the job titles prediction problem. The BERT with multilingual pre-trained model obtains the highest result by Fl-scores on both development and test sets, which are 62.20% on the development set, and 47.44% on the test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信