全局启动,局部优化,全局预测:提高不平衡数据的性能

David A. Cieslak, N. Chawla
{"title":"全局启动,局部优化,全局预测:提高不平衡数据的性能","authors":"David A. Cieslak, N. Chawla","doi":"10.1109/ICDM.2008.87","DOIUrl":null,"url":null,"abstract":"Class imbalance is a ubiquitous problem in supervised learning and has gained wide-scale attention in the literature. Perhaps the most prevalent solution is to apply sampling to training data in order improve classifier performance. The typical approach will apply uniform levels of sampling globally. However, we believe that data is typically multi-modal, which suggests sampling should be treated locally rather than globally. It is the purpose of this paper to propose a framework which first identifies meaningful regions of data and then proceeds to find optimal sampling levels within each. This paper demonstrates that a global classifier trained on data locally sampled produces superior rank-orderings on a wide range of real-world and artificial datasets as compared to contemporary global sampling methods.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"28 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Start Globally, Optimize Locally, Predict Globally: Improving Performance on Imbalanced Data\",\"authors\":\"David A. Cieslak, N. Chawla\",\"doi\":\"10.1109/ICDM.2008.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class imbalance is a ubiquitous problem in supervised learning and has gained wide-scale attention in the literature. Perhaps the most prevalent solution is to apply sampling to training data in order improve classifier performance. The typical approach will apply uniform levels of sampling globally. However, we believe that data is typically multi-modal, which suggests sampling should be treated locally rather than globally. It is the purpose of this paper to propose a framework which first identifies meaningful regions of data and then proceeds to find optimal sampling levels within each. This paper demonstrates that a global classifier trained on data locally sampled produces superior rank-orderings on a wide range of real-world and artificial datasets as compared to contemporary global sampling methods.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"28 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

班级失衡是监督学习中普遍存在的问题,在文献中引起了广泛的关注。也许最普遍的解决方案是对训练数据进行采样,以提高分类器的性能。典型的方法是在全局范围内采用统一水平的抽样。然而,我们认为数据通常是多模态的,这表明抽样应该局部处理,而不是全局处理。本文的目的是提出一个框架,该框架首先识别数据的有意义区域,然后在每个区域内找到最佳采样水平。本文证明,与当代全局采样方法相比,在局部采样数据上训练的全局分类器在广泛的现实世界和人工数据集上产生优越的排名排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Start Globally, Optimize Locally, Predict Globally: Improving Performance on Imbalanced Data
Class imbalance is a ubiquitous problem in supervised learning and has gained wide-scale attention in the literature. Perhaps the most prevalent solution is to apply sampling to training data in order improve classifier performance. The typical approach will apply uniform levels of sampling globally. However, we believe that data is typically multi-modal, which suggests sampling should be treated locally rather than globally. It is the purpose of this paper to propose a framework which first identifies meaningful regions of data and then proceeds to find optimal sampling levels within each. This paper demonstrates that a global classifier trained on data locally sampled produces superior rank-orderings on a wide range of real-world and artificial datasets as compared to contemporary global sampling methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信