{"title":"非参数密度估计的渐近性能和定性性能:比较研究","authors":"Teruko Takada","doi":"10.1111/j.1368-423X.2008.00249.x","DOIUrl":null,"url":null,"abstract":"Motivated by finance applications, we assessed the performance of several univariate density estimation methods, focusing on their ability to deal with heavy-tailed target densities. Four approaches, a fixed bandwidth kernel estimator, an adaptive bandwidth kernel estimator, the Hermite series (SNP) estimator of Gallant and Nychka, and the logspline estimator of Kooperberg and Stone, are compared. We conclude that the logspline and adaptive kernel methods provide superior performance, and the convergence rate of the SNP estimator is remarkably slow compared with the other methods. The Hellinger convergence rate of the SNP estimator is derived as a function of tail heaviness. These findings are confirmed in Monte Carlo experiments. Qualitative assessment reveals the possibility that side lobes in the tails of the fixed kernel and SNP estimates are artefacts of the fitting method. Copyright The Author(s). Journal compilation Royal Economic Society 2008","PeriodicalId":175689,"journal":{"name":"Wiley-Blackwell: Econometrics Journal","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Asymptotic and Qualitative Performance of Non-Parametric Density Estimators: A Comparative Study\",\"authors\":\"Teruko Takada\",\"doi\":\"10.1111/j.1368-423X.2008.00249.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by finance applications, we assessed the performance of several univariate density estimation methods, focusing on their ability to deal with heavy-tailed target densities. Four approaches, a fixed bandwidth kernel estimator, an adaptive bandwidth kernel estimator, the Hermite series (SNP) estimator of Gallant and Nychka, and the logspline estimator of Kooperberg and Stone, are compared. We conclude that the logspline and adaptive kernel methods provide superior performance, and the convergence rate of the SNP estimator is remarkably slow compared with the other methods. The Hellinger convergence rate of the SNP estimator is derived as a function of tail heaviness. These findings are confirmed in Monte Carlo experiments. Qualitative assessment reveals the possibility that side lobes in the tails of the fixed kernel and SNP estimates are artefacts of the fitting method. Copyright The Author(s). Journal compilation Royal Economic Society 2008\",\"PeriodicalId\":175689,\"journal\":{\"name\":\"Wiley-Blackwell: Econometrics Journal\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley-Blackwell: Econometrics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/j.1368-423X.2008.00249.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley-Blackwell: Econometrics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1368-423X.2008.00249.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic and Qualitative Performance of Non-Parametric Density Estimators: A Comparative Study
Motivated by finance applications, we assessed the performance of several univariate density estimation methods, focusing on their ability to deal with heavy-tailed target densities. Four approaches, a fixed bandwidth kernel estimator, an adaptive bandwidth kernel estimator, the Hermite series (SNP) estimator of Gallant and Nychka, and the logspline estimator of Kooperberg and Stone, are compared. We conclude that the logspline and adaptive kernel methods provide superior performance, and the convergence rate of the SNP estimator is remarkably slow compared with the other methods. The Hellinger convergence rate of the SNP estimator is derived as a function of tail heaviness. These findings are confirmed in Monte Carlo experiments. Qualitative assessment reveals the possibility that side lobes in the tails of the fixed kernel and SNP estimates are artefacts of the fitting method. Copyright The Author(s). Journal compilation Royal Economic Society 2008