关于离零最小偏差的多元拟多项式

F. Luquin
{"title":"关于离零最小偏差的多元拟多项式","authors":"F. Luquin","doi":"10.1006/jath.2001.3582","DOIUrl":null,"url":null,"abstract":"We generalize to several variables both the upper and the lower Gelfond bounds for the least uniform deviation from zero of the quasipolynomials (or Muntz-Legendre polynomials) on the segment [0, 1]. Orthonormal quasipolynomials are also considered.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Multivariate Quasipolynomials of the Minimal Deviation from Zero\",\"authors\":\"F. Luquin\",\"doi\":\"10.1006/jath.2001.3582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize to several variables both the upper and the lower Gelfond bounds for the least uniform deviation from zero of the quasipolynomials (or Muntz-Legendre polynomials) on the segment [0, 1]. Orthonormal quasipolynomials are also considered.\",\"PeriodicalId\":202056,\"journal\":{\"name\":\"J. Approx. Theory\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Approx. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1006/jath.2001.3582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2001.3582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将段[0,1]上拟多项式(或Muntz-Legendre多项式)离零最小一致偏差的上下格尔方界推广到若干变量。还考虑了标准正交拟多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Multivariate Quasipolynomials of the Minimal Deviation from Zero
We generalize to several variables both the upper and the lower Gelfond bounds for the least uniform deviation from zero of the quasipolynomials (or Muntz-Legendre polynomials) on the segment [0, 1]. Orthonormal quasipolynomials are also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信