{"title":"逆算子,q-分数积分,q-伯努利多项式","authors":"M. Ismail, Mizan Rahman","doi":"10.1006/jath.2001.3644","DOIUrl":null,"url":null,"abstract":"We introduce operators of q-fractional integration through inverses of the Askey-Wilson operator and use them to introduce a q-fractional calculus. We establish the semigroup property for fractional integrals and fractional derivatives. We study properties of the kernel of q-fractional integral and show how they give rise to a q-analogue of Bernoulli polynomials, which are now polynomials of two variables, x and y. As q->1 the polynomials become polynomials in x-y, a convolution kernel in one variable. We also evaluate explicitly a related kernel of a right inverse of the Askey-Wilson operator on an L^2 space weighted by the weight function of the Askey-Wilson polynomials.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Inverse Operators, q-Fractional Integrals, and q-Bernoulli Polynomials\",\"authors\":\"M. Ismail, Mizan Rahman\",\"doi\":\"10.1006/jath.2001.3644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce operators of q-fractional integration through inverses of the Askey-Wilson operator and use them to introduce a q-fractional calculus. We establish the semigroup property for fractional integrals and fractional derivatives. We study properties of the kernel of q-fractional integral and show how they give rise to a q-analogue of Bernoulli polynomials, which are now polynomials of two variables, x and y. As q->1 the polynomials become polynomials in x-y, a convolution kernel in one variable. We also evaluate explicitly a related kernel of a right inverse of the Askey-Wilson operator on an L^2 space weighted by the weight function of the Askey-Wilson polynomials.\",\"PeriodicalId\":202056,\"journal\":{\"name\":\"J. Approx. Theory\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Approx. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1006/jath.2001.3644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2001.3644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inverse Operators, q-Fractional Integrals, and q-Bernoulli Polynomials
We introduce operators of q-fractional integration through inverses of the Askey-Wilson operator and use them to introduce a q-fractional calculus. We establish the semigroup property for fractional integrals and fractional derivatives. We study properties of the kernel of q-fractional integral and show how they give rise to a q-analogue of Bernoulli polynomials, which are now polynomials of two variables, x and y. As q->1 the polynomials become polynomials in x-y, a convolution kernel in one variable. We also evaluate explicitly a related kernel of a right inverse of the Askey-Wilson operator on an L^2 space weighted by the weight function of the Askey-Wilson polynomials.