单位圆弧上正交多项式的强渐近性和弱收敛性

M. Hernández, E. Díaz
{"title":"单位圆弧上正交多项式的强渐近性和弱收敛性","authors":"M. Hernández, E. Díaz","doi":"10.1006/jath.2001.3574","DOIUrl":null,"url":null,"abstract":"Let @s be a finite positive Borel measure supported on an arc @c of the unit circle, such that @s'>0 a.e. on @c. We obtain a theorem about the weak convergence of the corresponding sequence of orthonormal polynomials. Moreover, we prove an analogue of the [email protected]?-Geronimus theorem on strong asymptotics of the orthogonal polynomials on the complement of @c, which completes to its full extent a result of N. I. Akhiezer. The key tool in the proofs is the use of orthogonality with respect to varying measures.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Strong Asymptotic Behavior and Weak Convergence of Polynomials Orthogonal on an Arc of the Unit Circle\",\"authors\":\"M. Hernández, E. Díaz\",\"doi\":\"10.1006/jath.2001.3574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let @s be a finite positive Borel measure supported on an arc @c of the unit circle, such that @s'>0 a.e. on @c. We obtain a theorem about the weak convergence of the corresponding sequence of orthonormal polynomials. Moreover, we prove an analogue of the [email protected]?-Geronimus theorem on strong asymptotics of the orthogonal polynomials on the complement of @c, which completes to its full extent a result of N. I. Akhiezer. The key tool in the proofs is the use of orthogonality with respect to varying measures.\",\"PeriodicalId\":202056,\"journal\":{\"name\":\"J. Approx. Theory\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Approx. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1006/jath.2001.3574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2001.3574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

设@s是支撑在单位圆的弧@c上的有限正Borel测度,使得@s'>0 a.e.在@c上。得到了标准正交多项式对应序列的弱收敛性定理。此外,我们证明了[email protected]?-关于@c补上正交多项式的强渐近性的geronimus定理,完整地完成了N. I. Akhiezer的一个结果。证明中的关键工具是对不同测度的正交性的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Asymptotic Behavior and Weak Convergence of Polynomials Orthogonal on an Arc of the Unit Circle
Let @s be a finite positive Borel measure supported on an arc @c of the unit circle, such that @s'>0 a.e. on @c. We obtain a theorem about the weak convergence of the corresponding sequence of orthonormal polynomials. Moreover, we prove an analogue of the [email protected]?-Geronimus theorem on strong asymptotics of the orthogonal polynomials on the complement of @c, which completes to its full extent a result of N. I. Akhiezer. The key tool in the proofs is the use of orthogonality with respect to varying measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信