{"title":"单位圆弧上正交多项式的强渐近性和弱收敛性","authors":"M. Hernández, E. Díaz","doi":"10.1006/jath.2001.3574","DOIUrl":null,"url":null,"abstract":"Let @s be a finite positive Borel measure supported on an arc @c of the unit circle, such that @s'>0 a.e. on @c. We obtain a theorem about the weak convergence of the corresponding sequence of orthonormal polynomials. Moreover, we prove an analogue of the [email protected]?-Geronimus theorem on strong asymptotics of the orthogonal polynomials on the complement of @c, which completes to its full extent a result of N. I. Akhiezer. The key tool in the proofs is the use of orthogonality with respect to varying measures.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Strong Asymptotic Behavior and Weak Convergence of Polynomials Orthogonal on an Arc of the Unit Circle\",\"authors\":\"M. Hernández, E. Díaz\",\"doi\":\"10.1006/jath.2001.3574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let @s be a finite positive Borel measure supported on an arc @c of the unit circle, such that @s'>0 a.e. on @c. We obtain a theorem about the weak convergence of the corresponding sequence of orthonormal polynomials. Moreover, we prove an analogue of the [email protected]?-Geronimus theorem on strong asymptotics of the orthogonal polynomials on the complement of @c, which completes to its full extent a result of N. I. Akhiezer. The key tool in the proofs is the use of orthogonality with respect to varying measures.\",\"PeriodicalId\":202056,\"journal\":{\"name\":\"J. Approx. Theory\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Approx. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1006/jath.2001.3574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2001.3574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
设@s是支撑在单位圆的弧@c上的有限正Borel测度,使得@s'>0 a.e.在@c上。得到了标准正交多项式对应序列的弱收敛性定理。此外,我们证明了[email protected]?-关于@c补上正交多项式的强渐近性的geronimus定理,完整地完成了N. I. Akhiezer的一个结果。证明中的关键工具是对不同测度的正交性的使用。
Strong Asymptotic Behavior and Weak Convergence of Polynomials Orthogonal on an Arc of the Unit Circle
Let @s be a finite positive Borel measure supported on an arc @c of the unit circle, such that @s'>0 a.e. on @c. We obtain a theorem about the weak convergence of the corresponding sequence of orthonormal polynomials. Moreover, we prove an analogue of the [email protected]?-Geronimus theorem on strong asymptotics of the orthogonal polynomials on the complement of @c, which completes to its full extent a result of N. I. Akhiezer. The key tool in the proofs is the use of orthogonality with respect to varying measures.