二重函数的渐近展开式

Chelo Ferreira, J. López
{"title":"二重函数的渐近展开式","authors":"Chelo Ferreira, J. López","doi":"10.1006/jath.2001.3578","DOIUrl":null,"url":null,"abstract":"The Barnes double gamma function G(z) is considered for large argument z. A new integral representation is obtained for logG(z). An asymptotic expansion in decreasing powers of z and uniformly valid for |Argz|<@p is derived from this integral. The expansion is accompanied by an error bound at any order of the approximation. Numerical experiments show that this bound is very accurate for real z. The accuracy of the error bound decreases for increasing Argz.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"An Asymptotic Expansion of the Double Gamma Function\",\"authors\":\"Chelo Ferreira, J. López\",\"doi\":\"10.1006/jath.2001.3578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Barnes double gamma function G(z) is considered for large argument z. A new integral representation is obtained for logG(z). An asymptotic expansion in decreasing powers of z and uniformly valid for |Argz|<@p is derived from this integral. The expansion is accompanied by an error bound at any order of the approximation. Numerical experiments show that this bound is very accurate for real z. The accuracy of the error bound decreases for increasing Argz.\",\"PeriodicalId\":202056,\"journal\":{\"name\":\"J. Approx. Theory\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Approx. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1006/jath.2001.3578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2001.3578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

考虑了大参数z的Barnes双伽马函数G(z),得到了logG(z)的一个新的积分表示。由该积分导出了z的渐近降幂展开式,该展开式对|Argz|<@p一致有效。展开式在任何近似阶上都伴随着误差界。数值实验表明,该误差界对于实z是非常精确的。随着Argz的增大,误差界的精度降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Asymptotic Expansion of the Double Gamma Function
The Barnes double gamma function G(z) is considered for large argument z. A new integral representation is obtained for logG(z). An asymptotic expansion in decreasing powers of z and uniformly valid for |Argz|<@p is derived from this integral. The expansion is accompanied by an error bound at any order of the approximation. Numerical experiments show that this bound is very accurate for real z. The accuracy of the error bound decreases for increasing Argz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信