一种分析由多重指数函数表示的数据的方法。

Biotelemetry Pub Date : 1977-01-01
Y Yamada
{"title":"一种分析由多重指数函数表示的数据的方法。","authors":"Y Yamada","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A method for the analysis of the data represented by the sum of multiple exponential functions is proposed in which each component of f(t) = n sigma i=1 aie -zetait is expressed as a spectrum. The convolution integral is derived by applying the Laplacian integral to f(t) with suitable transformation of the variables, and the spectrum representation is obtained by using the Fourier transformation. A generalized theoretical analysis is made and several results of numerical evaluations for model data or experimental data are briefly described.</p>","PeriodicalId":75602,"journal":{"name":"Biotelemetry","volume":"4 4","pages":"181-92"},"PeriodicalIF":0.0000,"publicationDate":"1977-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for the analysis of the data represented by a multiple exponential function.\",\"authors\":\"Y Yamada\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A method for the analysis of the data represented by the sum of multiple exponential functions is proposed in which each component of f(t) = n sigma i=1 aie -zetait is expressed as a spectrum. The convolution integral is derived by applying the Laplacian integral to f(t) with suitable transformation of the variables, and the spectrum representation is obtained by using the Fourier transformation. A generalized theoretical analysis is made and several results of numerical evaluations for model data or experimental data are briefly described.</p>\",\"PeriodicalId\":75602,\"journal\":{\"name\":\"Biotelemetry\",\"volume\":\"4 4\",\"pages\":\"181-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1977-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotelemetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotelemetry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种分析由多个指数函数和表示的数据的方法,其中f(t) = n sigma i=1 aie - zetit的每个分量都表示为谱。对f(t)进行拉普拉斯积分,并对变量进行适当的变换,得到卷积积分,用傅里叶变换得到频谱表示。本文作了广义的理论分析,并简要介绍了几种模型数据或实验数据的数值评价结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for the analysis of the data represented by a multiple exponential function.

A method for the analysis of the data represented by the sum of multiple exponential functions is proposed in which each component of f(t) = n sigma i=1 aie -zetait is expressed as a spectrum. The convolution integral is derived by applying the Laplacian integral to f(t) with suitable transformation of the variables, and the spectrum representation is obtained by using the Fourier transformation. A generalized theoretical analysis is made and several results of numerical evaluations for model data or experimental data are briefly described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信