krylov矩阵与n维线性时不变状态方程的可控性

A. Maćkiewicz, F. Almansa, J. A. Inaudi
{"title":"krylov矩阵与n维线性时不变状态方程的可控性","authors":"A. Maćkiewicz, F. Almansa, J. A. Inaudi","doi":"10.1002/STC.4300030109","DOIUrl":null,"url":null,"abstract":"The classical Rosenbrock's algorithm (based on the Gauss elimination method) for n-dimensional linear time invariant state equation matrices is analysed and modernized. The method of orthogonal similarity reduction to block Hessenberg form is used to assure numerical stability. The updated version of the Rosenbrock's algorithm is then justified in a very easy way using properties of Krylov matrices. Additionally, this algorithm can be used to determine an equivalence transformation which converts an n-dimensional linear state equation into a controllable form (or a time invariant one into an equivalent observable form). It is advantageous for big and medium size problems and can be easily parallelized. Numerical examples are presented.","PeriodicalId":135735,"journal":{"name":"Journal of Structural Control","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On krylov matrices and controllability of n‐dimensional linear time‐invariant state equations\",\"authors\":\"A. Maćkiewicz, F. Almansa, J. A. Inaudi\",\"doi\":\"10.1002/STC.4300030109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical Rosenbrock's algorithm (based on the Gauss elimination method) for n-dimensional linear time invariant state equation matrices is analysed and modernized. The method of orthogonal similarity reduction to block Hessenberg form is used to assure numerical stability. The updated version of the Rosenbrock's algorithm is then justified in a very easy way using properties of Krylov matrices. Additionally, this algorithm can be used to determine an equivalence transformation which converts an n-dimensional linear state equation into a controllable form (or a time invariant one into an equivalent observable form). It is advantageous for big and medium size problems and can be easily parallelized. Numerical examples are presented.\",\"PeriodicalId\":135735,\"journal\":{\"name\":\"Journal of Structural Control\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/STC.4300030109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/STC.4300030109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对求解n维线性时不变状态方程矩阵的经典Rosenbrock算法(基于高斯消去法)进行了分析和改进。采用正交相似约简到块Hessenberg形式的方法来保证数值的稳定性。更新版本的Rosenbrock的算法,然后证明在一个非常简单的方法使用克雷洛夫矩阵的性质。此外,该算法可用于确定将n维线性状态方程转换为可控形式(或将时不变状态方程转换为等效可观察形式)的等效变换。它有利于大中型问题,可以很容易地并行化。给出了数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On krylov matrices and controllability of n‐dimensional linear time‐invariant state equations
The classical Rosenbrock's algorithm (based on the Gauss elimination method) for n-dimensional linear time invariant state equation matrices is analysed and modernized. The method of orthogonal similarity reduction to block Hessenberg form is used to assure numerical stability. The updated version of the Rosenbrock's algorithm is then justified in a very easy way using properties of Krylov matrices. Additionally, this algorithm can be used to determine an equivalence transformation which converts an n-dimensional linear state equation into a controllable form (or a time invariant one into an equivalent observable form). It is advantageous for big and medium size problems and can be easily parallelized. Numerical examples are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信